Câu hỏi:

30/09/2025 70 Lưu

Số giao điểm của đồ thị hàm số \(y = {x^3} - 3x + 1\) và trục hoành là

A. \(3\).                      
B. \(0\).                   
C. \(2\).                           
D. \(1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Tập xác định: \(\mathbb{R}\).

Ta có: \(y' = 3{x^2} - 3 = 3\left( {{x^2} - 1} \right);y' = 0 \Leftrightarrow x =  \pm 1\).

Bảng biến thiên

Số giao điểm của đồ thị hàm số \(y = {x^3} - 3x + 1\) và trục hoành là A. \(3\).	B. \(0\).	C. \(2\).	D. \(1\). (ảnh 1)

Từ bảng biến thiên ta thấy đồ thị hàm số cắt trục hoành tại \(3\) điểm phân biệt.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(2\sqrt {17} \)

Xét hàm số \(y = \frac{{2{x^2} + 5x + 4}}{{x + 2}}\)

Điều kiện: \(x \ne  - 2\)

Ta có: \(y' = \frac{{2{x^2} + 8x + 6}}{{{{\left( {x + 2} \right)}^2}}}\)     \(\left( {x \ne  - 2} \right)\)

Cho \(y' = 0\)\( \Rightarrow 2{x^2} + 8x + 6 = 0\)\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{x =  - 1 \Rightarrow y = 1}\\{\,\,\,x =  - 3 \Rightarrow y =  - 7}\end{array}} \right.\)

Đồ thị hàm số có hai điểm cực trị \(A\left( { - 1;1} \right)\) và \(B\left( { - 3; - 7} \right)\)\( \Rightarrow AB = 2\sqrt {17} \)

Câu 2

A. \(y' > 0,\,\forall x \ne 1\).                      
B. \(y' > 0,\,\forall x \in \mathbb{R}\).                    
C. \(y' < 0,\,\forall x \in \mathbb{R}\).                    
D. \(y' < 0,\,\forall x \ne 1\).

Lời giải

Chọn A

Biết hàm số \(y = \frac{{x + a}}{{x - 1}}\) (\(a\) là số thực cho trước, \(a \ne  - 1\)) có đồ thị như trong hình vẽ sau   Mệnh đề nào dưới đây đúng? (ảnh 2)

Tập xác định của hàm số đã cho là \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

Ta có: \(y' = \frac{{ - 1 - a}}{{{{\left( {x - 1} \right)}^2}}},\,\forall x \ne 1\). Từ đồ thị của hàm số suy ra hàm số đã cho đồng biến trên mỗi khoảng xác định vì vậy \(y' > 0,\,\forall x \ne 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP