Câu hỏi:

30/09/2025 531 Lưu

Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số \(y = f\left( x \right) = \frac{{3x - 1}}{{x - 3}}\) trên đoạn\(\left[ {0;\;2} \right]\). Xét tính đúng sai của các mệnh đề sau:

a. Hàm số đã cho đồng biến trên khoảng \(\left( {0;2} \right)\)

b. \(M = \mathop {{\rm{max}}y}\limits_{\left[ {0;\;2} \right]}  = f\left( 1 \right) = \frac{1}{3}\)

c. \(m = \mathop {{\rm{min}}y}\limits_{\left[ {0;\;2} \right]}  = f\left( 2 \right) =  - 5\)

d. \(P = M.m =  - \frac{5}{3}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hàm số đã cho liên tục trên đoạn \(\left[ {0;\;2} \right]\).

Ta có \(y' =  - \frac{8}{{{{\left( {x - 3} \right)}^2}}}\; < \;0\;;\;\forall x \ne 3\)suy ra hàm số nghịch biến trên đoạn \(\left( {0;2} \right)\)

Vậy \(M = \mathop {{\rm{max}}y}\limits_{\left[ {0;\;2} \right]}  = f\left( 0 \right) = \frac{1}{3}\) và \(m = \mathop {{\rm{min}}y}\limits_{\left[ {0;\;2} \right]}  = f\left( 2 \right) =  - 5\)

Suy ra \(P = M.m = \frac{1}{3}.\left( { - 5} \right) =  - \frac{5}{3}.\)

a. Sai.

b. Sai.

c. Đúng.

d. Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(2\sqrt {17} \)

Xét hàm số \(y = \frac{{2{x^2} + 5x + 4}}{{x + 2}}\)

Điều kiện: \(x \ne  - 2\)

Ta có: \(y' = \frac{{2{x^2} + 8x + 6}}{{{{\left( {x + 2} \right)}^2}}}\)     \(\left( {x \ne  - 2} \right)\)

Cho \(y' = 0\)\( \Rightarrow 2{x^2} + 8x + 6 = 0\)\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{x =  - 1 \Rightarrow y = 1}\\{\,\,\,x =  - 3 \Rightarrow y =  - 7}\end{array}} \right.\)

Đồ thị hàm số có hai điểm cực trị \(A\left( { - 1;1} \right)\) và \(B\left( { - 3; - 7} \right)\)\( \Rightarrow AB = 2\sqrt {17} \)

Câu 2

A. \(y' > 0,\,\forall x \ne 1\).                      
B. \(y' > 0,\,\forall x \in \mathbb{R}\).                    
C. \(y' < 0,\,\forall x \in \mathbb{R}\).                    
D. \(y' < 0,\,\forall x \ne 1\).

Lời giải

Chọn A

Biết hàm số \(y = \frac{{x + a}}{{x - 1}}\) (\(a\) là số thực cho trước, \(a \ne  - 1\)) có đồ thị như trong hình vẽ sau   Mệnh đề nào dưới đây đúng? (ảnh 2)

Tập xác định của hàm số đã cho là \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

Ta có: \(y' = \frac{{ - 1 - a}}{{{{\left( {x - 1} \right)}^2}}},\,\forall x \ne 1\). Từ đồ thị của hàm số suy ra hàm số đã cho đồng biến trên mỗi khoảng xác định vì vậy \(y' > 0,\,\forall x \ne 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP