Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số \(y = f\left( x \right) = \frac{{3x - 1}}{{x - 3}}\) trên đoạn\(\left[ {0;\;2} \right]\). Xét tính đúng sai của các mệnh đề sau:
a. Hàm số đã cho đồng biến trên khoảng \(\left( {0;2} \right)\)
b. \(M = \mathop {{\rm{max}}y}\limits_{\left[ {0;\;2} \right]} = f\left( 1 \right) = \frac{1}{3}\)
c. \(m = \mathop {{\rm{min}}y}\limits_{\left[ {0;\;2} \right]} = f\left( 2 \right) = - 5\)
d. \(P = M.m = - \frac{5}{3}.\)
Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số \(y = f\left( x \right) = \frac{{3x - 1}}{{x - 3}}\) trên đoạn\(\left[ {0;\;2} \right]\). Xét tính đúng sai của các mệnh đề sau:
a. Hàm số đã cho đồng biến trên khoảng \(\left( {0;2} \right)\)
b. \(M = \mathop {{\rm{max}}y}\limits_{\left[ {0;\;2} \right]} = f\left( 1 \right) = \frac{1}{3}\)
c. \(m = \mathop {{\rm{min}}y}\limits_{\left[ {0;\;2} \right]} = f\left( 2 \right) = - 5\)
d. \(P = M.m = - \frac{5}{3}.\)
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương 1 (có lời giải) !!
Quảng cáo
Trả lời:
Hàm số đã cho liên tục trên đoạn \(\left[ {0;\;2} \right]\).
Ta có \(y' = - \frac{8}{{{{\left( {x - 3} \right)}^2}}}\; < \;0\;;\;\forall x \ne 3\)suy ra hàm số nghịch biến trên đoạn \(\left( {0;2} \right)\)
Vậy \(M = \mathop {{\rm{max}}y}\limits_{\left[ {0;\;2} \right]} = f\left( 0 \right) = \frac{1}{3}\) và \(m = \mathop {{\rm{min}}y}\limits_{\left[ {0;\;2} \right]} = f\left( 2 \right) = - 5\)
Suy ra \(P = M.m = \frac{1}{3}.\left( { - 5} \right) = - \frac{5}{3}.\)
a. Sai.
b. Sai.
c. Đúng.
d. Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(2\sqrt {17} \)
Xét hàm số \(y = \frac{{2{x^2} + 5x + 4}}{{x + 2}}\)
Điều kiện: \(x \ne - 2\)
Ta có: \(y' = \frac{{2{x^2} + 8x + 6}}{{{{\left( {x + 2} \right)}^2}}}\) \(\left( {x \ne - 2} \right)\)
Cho \(y' = 0\)\( \Rightarrow 2{x^2} + 8x + 6 = 0\)\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = - 1 \Rightarrow y = 1}\\{\,\,\,x = - 3 \Rightarrow y = - 7}\end{array}} \right.\)
Đồ thị hàm số có hai điểm cực trị \(A\left( { - 1;1} \right)\) và \(B\left( { - 3; - 7} \right)\)\( \Rightarrow AB = 2\sqrt {17} \)
Câu 2
Lời giải
Chọn A

Tập xác định của hàm số đã cho là \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).
Ta có: \(y' = \frac{{ - 1 - a}}{{{{\left( {x - 1} \right)}^2}}},\,\forall x \ne 1\). Từ đồ thị của hàm số suy ra hàm số đã cho đồng biến trên mỗi khoảng xác định vì vậy \(y' > 0,\,\forall x \ne 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


