Câu hỏi:

30/09/2025 4 Lưu

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(y = f'\left( x \right)\) như hình vẽ bên dưới. Số điểm cực trị của hàm số đã cho là

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(y = f'\left( x \right)\) như hình vẽ bên dưới. Số điểm cực trị của hàm số đã cho là   (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: 1

Số điểm cực trị của hàm số đã cho là \(1\). Vì dựa vào đồ thị của \(f'\left( x \right)\), đạo hàm đổi dấu một lần từ âm sang dương nên hàm số đã cho có một cực trị (một cực tiểu).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 5

Giả sử hàm số có đồ thị là \((C)\). Ta có :

+)    \[y = \frac{{{x^2} - x + 1}}{{x - 1}} = x + \frac{1}{{x - 1}}\].

+)   \(\mathop {\lim }\limits_{x \to  \pm \infty } \left[ {f\left( x \right) - x} \right] = \mathop {\lim }\limits_{x \to  \pm \infty } \left[ {\frac{{{x^2} - x + 1}}{{x - 1}} - x} \right] = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{1}{{x - 1}} = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{\frac{1}{x}}}{{1 - \frac{1}{x}}} = 0 \Rightarrow \left( C \right)\) có tiệm cận xiên là đường thẳng \(y = x\).

Suy ra :  \(a = 1;\,\,\,b = 0\,\, \Rightarrow P = 5a + 2024b = 5.1 + 2024.0 = 5.\)

Lời giải

Đáp án: \(2\sqrt {17} \)

Xét hàm số \(y = \frac{{2{x^2} + 5x + 4}}{{x + 2}}\)

Điều kiện: \(x \ne  - 2\)

Ta có: \(y' = \frac{{2{x^2} + 8x + 6}}{{{{\left( {x + 2} \right)}^2}}}\)     \(\left( {x \ne  - 2} \right)\)

Cho \(y' = 0\)\( \Rightarrow 2{x^2} + 8x + 6 = 0\)\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{x =  - 1 \Rightarrow y = 1}\\{\,\,\,x =  - 3 \Rightarrow y =  - 7}\end{array}} \right.\)

Đồ thị hàm số có hai điểm cực trị \(A\left( { - 1;1} \right)\) và \(B\left( { - 3; - 7} \right)\)\( \Rightarrow AB = 2\sqrt {17} \)