Câu hỏi:

30/09/2025 17 Lưu

Cho chuyển động được xác định bởi phương trình \[s = 3{t^3} + 4{t^2} - t\], trong đó \(t\) được tính bằng giây và \(s\) được tính bằng mét. Vận tốc của chuyển động khi \[t = 4s\] bằng

A. \[175m/s.\]            
B. \[41m/s.\]            
C. \[176m/s.\]                 
D. \[20m/s.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(v = s' = 9{t^2} + 8t - 1\).

Vận tốc của chuyển động khi \[t = 4s\] bằng \(v\left( 4 \right) = {9.4^2} + 8.4 - 1 = 175\,\left( {m/s} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \[v'(t) = 0,003906{t^2} - 0,18058t\]

\[v'(t) = 0 \Leftrightarrow 0,003906{t^2} - 0,18058t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 46,23\end{array} \right.\].

\[\begin{array}{l}v(0) = 83;\\v\left( {46,23} \right) = 18,67;\\v\left( {126} \right) = 1254,05.\end{array}\]

Tàu con thoi đạt vận tốc lớn nhất bằng \[1254,05\,\,\,\left( {ft/s} \right)\].

Lời giải

\(y = {x^3} - 3{x^2} - 9x + 5\). Tập xác định \(D = \mathbb{R}\).

\(y' = 3{x^2} - 6x - 9\).

\(y' = 0 \Leftrightarrow 3{x^2} - 6x - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\x = 3\end{array} \right.\).

Với \[x =  - 1 \Rightarrow y = 10 \Rightarrow A\left( { - 1;10} \right)\].

Với \[x = 3 \Rightarrow y =  - 22 \Rightarrow B\left( {3; - 22} \right)\].

Ta có phương trình đường thẳng \[AB\] là: \[\frac{{x + 1}}{{3 + 1}} = \frac{{y - 10}}{{ - 22 - 10}}\] \[ \Rightarrow y =  - 8x + 2\] \[ \Rightarrow {x_I} = \frac{1}{4}\]

Vậy suy ra \[\frac{{IA}}{{IB}} = \frac{{\sqrt {{{\left( { - 1 - \frac{1}{4}} \right)}^2} + {{10}^2}} }}{{\sqrt {{{\left( {3 - \frac{1}{4}} \right)}^2} + {{22}^2}} }} = \frac{5}{{11}}\]\( \Rightarrow b + c = 16\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP