Câu hỏi:

30/09/2025 286 Lưu

Cho chuyển động được xác định bởi phương trình \[s = 3{t^3} + 4{t^2} - t\], trong đó \(t\) được tính bằng giây và \(s\) được tính bằng mét. Vận tốc của chuyển động khi \[t = 4s\] bằng

A. \[175m/s.\]            
B. \[41m/s.\]            
C. \[176m/s.\]                 
D. \[20m/s.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(v = s' = 9{t^2} + 8t - 1\).

Vận tốc của chuyển động khi \[t = 4s\] bằng \(v\left( 4 \right) = {9.4^2} + 8.4 - 1 = 175\,\left( {m/s} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \[v'(t) = 0,003906{t^2} - 0,18058t\]

\[v'(t) = 0 \Leftrightarrow 0,003906{t^2} - 0,18058t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 46,23\end{array} \right.\].

\[\begin{array}{l}v(0) = 83;\\v\left( {46,23} \right) = 18,67;\\v\left( {126} \right) = 1254,05.\end{array}\]

Tàu con thoi đạt vận tốc lớn nhất bằng \[1254,05\,\,\,\left( {ft/s} \right)\].

Lời giải

Ta có độ dài một cạnh của mảnh vườn là \(x\,\,\left( m \right)\) nên độ dài cạnh còn lại của mảnh vườn là \(\frac{{900}}{x}\,\,\left( m \right)\).

Ta có \(x \ge \frac{{900}}{x}\,\). Suy ra, \(x \ge 30\).

Ta có \(P\left( x \right) = 2\left( {x + \frac{{900}}{x}} \right) = 2x + \frac{{1800}}{x}\).

\(\mathop {\lim }\limits_{x \to + \infty } \left[ {P\left( x \right) - 2x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{1800}}{x} = 0\) nên đồ thị hàm số \(P\left( x \right)\) có tiệm cận xiên là đường thẳng \(y = 2x\).

Suy ra \(a = 2,\,\,b = 0\). Do vậy, \[T = 100\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(y = 2x\).             
B. \(y = 2\).              
C. \(y = 2x - 7\).                            
D. \(x = - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP