Câu hỏi:

03/10/2025 26 Lưu

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

 Cho \(\sin \alpha = \frac{3}{5}\)90°<α<180°. Tính \(\cos \alpha \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\cos ^2}\alpha = 1 - {\sin ^2}\alpha = 1 - {\left( {\frac{3}{5}} \right)^2} = \frac{{16}}{{25}} \Rightarrow \cos \alpha = \pm \frac{4}{5}\). 90°<α<180° nên \(\cos \alpha < 0\). Vậy \(\cos \alpha = - \frac{4}{5}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có:

\(\begin{array}{l}\tan \alpha = \tan (\widehat {BAD} - \widehat {CAD})\\ = \frac{{\tan \widehat {BAD} - \tan \widehat {CAD}}}{{1 + \tan \widehat {BAD}\tan \widehat {CAD}}} = \frac{{\frac{{15}}{{12}} - \frac{9}{{12}}}}{{1 + \frac{{15}}{{12}} \cdot \frac{9}{{12}}}} = \frac{8}{{31}}.\end{array}\)

Vì vậy α14,47°

\(\begin{array}{*{20}{l}}B&{ = \frac{{\sin 2x + 2\sin 3x + \sin 4x}}{{\cos 3x + 2\cos 4x + \cos 5x}} = \frac{{2\sin 3x\cos x + 2\sin 3x}}{{2\cos 4x\cos x + 2\cos 4x}} = \frac{{2\sin 3x(\cos x + 1)}}{{2\cos 4x(\cos x + 1)}} = \frac{{\sin 3x}}{{\cos 4x}}}\\{}&{}\end{array}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho biết \(\sin x = \frac{1}{{\sqrt 3 }}\)\(0 < x < \frac{\pi }{2}\); khi đó:

a) \(\cos x > 0\)

b) \(\cos x = \frac{{\sqrt 6 }}{3}\)

c) \(\tan x = \frac{{\sqrt 3 }}{3}\)

d) \(\cos \left( {x + \frac{\pi }{3}} \right) = \frac{{\sqrt 6 - 3}}{8}{\rm{. }}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP