Câu hỏi:

11/10/2025 197 Lưu

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho tam giác \(ABC\). Hãy dựng các điểm \(M,N\) sao cho \(\overrightarrow {AM}  = \overrightarrow {BC} \), \(\overrightarrow {AN}  = \overrightarrow {CB} \). Khi đó:

a) \(\overrightarrow {AM} \) ngược hướng với \(\overrightarrow {BC} \)

b) \(ABCM\) là hình bình hành

c) \(ACBN\) là hình bình hành

d) \(\overrightarrow {AM} ,\overrightarrow {AN} \) là hai vectơ đối nhau

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai

b) Đúng

c) Đúng

d) Đúng

Ta có \(\overrightarrow {AM}  = \overrightarrow {BC} \) nên \(\overrightarrow {AM} \) cùng hướng với \(\overrightarrow {BC} \) và \(|\overrightarrow {AM} | = |\overrightarrow {BC} |\), vì vậy \(ABCM\) là hình bình hành (xem hình vẽ). Tương tự, \(\overrightarrow {AN}  = \overrightarrow {CB} \) nên \(\overrightarrow {AN} \) cùng hướng với \(\overrightarrow {CB} \) và \(|\overrightarrow {AN} | = |\overrightarrow {CB} |\), vì vậy \(ACBN\) là hình bình hành (xem hình vẽ).

Cho tam giác \(ABC\). Hãy dựng các điểm \(M,N\) sao cho \(\overrightarrow {AM}  = \overrightarrow {BC} \), \(\overrightarrow {AN}  = \overrightarrow {CB} \). Khi đó: (ảnh 1)

Từ hình vẽ, ta nhận thấy \(\overrightarrow {AM} ,\overrightarrow {AN} \) là hai vectơ đối nhau (\(A\) là trung điểm của đoạn thẳng \(MN\)).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho \(\Delta ABC\) có trực tâm \(H\) và \(O\) là tâm đường tròn ngoại tiếp tam giác. Gọi \({B^\prime }\) là điểm đối xứng của \(B\) qua \(O\). Khi đó:  a) \({B^\prime }C \bot BC\) (ảnh 1)

Ta có \(:B{B^\prime }\) là đường kính đường tròn ngoại tiếp tam giác \(ABC\) nên BCB'^=90°

Mặt khác \(AH \bot BC\), suy ra \({B^\prime }C//AH\) (1).

Tương tự: BAB'^=90° hay \(A{B^\prime } \bot AB\) mà \(CH \bot AB\) nên \(CH//A{B^\prime }(2)\).

Từ (1) và (2) suy ra tứ giác \(A{B^\prime }CH\) là hình bình hành.

Vì vậy: \(\overrightarrow {AH}  = \overrightarrow {{B^\prime }C} ;\overrightarrow {A{B^\prime }}  = \overrightarrow {HC} \).

Lời giải

a) Đúng

b) Sai

c) Sai

d) Đúng

 

Gọi \(M,N\) lần lượt là trung điểm cạnh \(BC,AB\).

Cho \(\Delta ABC\) đều cạnh \(a\), trực tâm \(H\). Khi đó:  a) \(AH \bot BC\) (ảnh 1)

Do tam giác \(ABC\) đều nên \(AM,BN\) cũng là các đường cao của tam giác \(ABC\); vì vậy \(H\) vừa là trực tâm vừa là trọng tâm tam giác này.

Áp dụng định lí Py-tha-go cho \(\Delta ABM\), ta có: \(A{M^2} = A{B^2} - B{M^2} = {a^2} - {\left( {\frac{a}{2}} \right)^2} = \frac{{3{a^2}}}{4}\)

\( \Rightarrow AM = \frac{{a\sqrt 3 }}{2}{\rm{. }}\)

Theo tính chất trọng tâm, ta có: \(AH = \frac{2}{3}AM = \frac{2}{3} \cdot \frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\).

Dễ thấy ba vectơ \(\overrightarrow {HA} ,\overrightarrow {HB} ,\overrightarrow {HC} \) có độ dài bằng nhau:

\[|\overrightarrow {HA} | = |\overrightarrow {HB} | = |\overrightarrow {HC} | = AH = \frac{{a\sqrt 3 }}{3}{\rm{. }}\]

 

Câu 3

A. Có 2 vectơ bằng \(\overrightarrow {PQ} \)                                     
B. Có 4 vectơ bằng \(\overrightarrow {AR} \)
C. Có 3 vectơ bằng \(\overrightarrow {BO} \)                                     
D. Có 5 vectơ bằng \(\overrightarrow {OP} \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left| {\overrightarrow {{\rm{AC}}} } \right| = \left| {\overrightarrow {{\rm{BD}}} } \right|\).                         
B. \(\left| {\overrightarrow {{\rm{CD}}} } \right| = \left| {\overrightarrow {{\rm{BC}}} } \right|\).                                
C. \(\left| {\overrightarrow {{\rm{AC}}} } \right| = \left| {\overrightarrow {{\rm{AB}}} } \right|\).                         
D. BD=7.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP