Câu hỏi:

12/10/2025 62 Lưu

Cho tam giác \(ABC\). Tập hợp các điểm \(M\) thỏa mãn \(\overrightarrow {MA} .\overrightarrow {BC} = 0\) là:

A. một điểm.               
B. đường thẳng.      
C. đoạn thẳng.                            
D. đường tròn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Ta có \(\overrightarrow {MA} .\overrightarrow {BC}  = 0 \Leftrightarrow MA \bot BC.\)

Vậy tập hợp các điểm \(M\) là đường thẳng đi qua \(A\) và vuông góc với \(BC.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Sai

c) Sai

d) Đúng

Cho hình thoi \(ABCD\) có cạnh bằng 2 và góc \(B\) bằng \({60^^\circ }\). Khi đó:  a) \((\overrightarrow {A (ảnh 1) 

Xét hình thoi \(ABCD\) có ABC^=60°BAD^=120°; tam giác \(ABC\) có AB=BC=2,ABC^=60°ΔABC đều cạnh 2OB=232=3

Ta có: (AB,AC)=BAC^=60°  ; (AB,DA)=180°(AB,AD)=180°BAD^=180°120°=60°

Ta có: DADC=|DA||DC|cos(DA,DC)=DADCcosADC^=22cos60°=2;

OBBA=BOBA=|BO||BA|cosABO^=BOBAcos30°=3232=3.

Lời giải

a) Sai

b) Đúng

c) Sai

d) Đúng

 

a) Ta có: ABAC=ABACcosA=426cos45°=24

b) Ta có: \(\overrightarrow {BC}  = \overrightarrow {AC}  - \overrightarrow {AB} ,\overrightarrow {AD}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} \).

Khi đó:

\(\begin{array}{*{20}{l}}{{{\overrightarrow {BC} }^2}}&{ = {{(\overrightarrow {AC}  - \overrightarrow {AB} )}^2} = {{\overrightarrow {AC} }^2} - 2\overrightarrow {AC}  \cdot \overrightarrow {AB}  + {{\overrightarrow {AB} }^2} = {6^2} - 2 \cdot 24 + {{(4\sqrt 2 )}^2} = 20}\\{}&{ \Rightarrow BC = 2\sqrt 5 .}\\{{{\overrightarrow {AD} }^2}}&{ = {{\left( {\frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} } \right)}^2} = \frac{1}{4}\left( {{{\overrightarrow {AB} }^2} + 2\overrightarrow {AB}  \cdot \overrightarrow {AC}  + {{\overrightarrow {AC} }^2}} \right)}\\{}&{ = \frac{1}{4}\left[ {{{(4\sqrt 2 )}^2} + 2 \cdot 24 + {6^2}} \right] = 29 \Rightarrow AD = \sqrt {29} .}\end{array}\)

c) Ta có: \(\overrightarrow {BE}  = \overrightarrow {AE}  - \overrightarrow {AB}  = k\overrightarrow {AC}  - \overrightarrow {AB} \). Từ đó, ta có:

\(\overrightarrow {AD}  \cdot \overrightarrow {BE}  = \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} ) \cdot (k\overrightarrow {AC}  - \overrightarrow {AB} )\)

\(\begin{array}{l} = \frac{1}{2}\left( {k\overrightarrow {AB}  \cdot \overrightarrow {AC}  + k{{\overrightarrow {AC} }^2} - {{\overrightarrow {AB} }^2} - \overrightarrow {AB}  \cdot \overrightarrow {AC} } \right) = \frac{1}{2}\left[ {24k + {6^2} \cdot k - {{(4\sqrt 2 )}^2} - 24} \right]\\ = 30k - 28.\end{array}\)

Khi đó \(AD \bot BE \Leftrightarrow \overrightarrow {AD}  \cdot \overrightarrow {BE}  = 0 \Leftrightarrow 30k - 28 = 0 \Leftrightarrow k = \frac{{14}}{{15}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP