Câu hỏi:

12/10/2025 40 Lưu

Cho hai vectơ \(\vec a\)\(\overrightarrow b \). Đẳng thức nào sau đây sai?

A. \(\vec a.\overrightarrow b = \frac{1}{2}\left( {{{\left| {\vec a + \overrightarrow b } \right|}^2} - {{\left| {\vec a} \right|}^2} - {{\left| {\overrightarrow b } \right|}^2}} \right)\)                                 
B. \(\vec a.\overrightarrow b = \frac{1}{2}\left( {{{\left| {\vec a} \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - {{\left| {\vec a - \overrightarrow b } \right|}^2}} \right)\)
C. \(\vec a.\overrightarrow b = \frac{1}{2}\left( {{{\left| {\vec a + \overrightarrow b } \right|}^2} - {{\left| {\vec a - \overrightarrow b } \right|}^2}} \right)\)                          
D. \(\vec a.\overrightarrow b = \frac{1}{4}\left( {{{\left| {\vec a + \overrightarrow b } \right|}^2} - {{\left| {\vec a - \overrightarrow b } \right|}^2}} \right)\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Nhận thấy C và D chỉ khác nhau về hệ số \(\frac{1}{2}\) và \(\frac{1}{4}\) nên thử kiểm tra đáp án C và D.

Ta có  Chọn C.

\( \bullet \) A đúng, vì \({\left| {\overrightarrow a  + \overrightarrow b } \right|^2} = {\left( {\overrightarrow a  + \overrightarrow b } \right)^2} = \left( {\overrightarrow a  + \overrightarrow b } \right).\left( {\overrightarrow a  + \overrightarrow b } \right) = \overrightarrow a .\overrightarrow a  + \overrightarrow a .\overrightarrow b  + \overrightarrow b .\overrightarrow a  + \overrightarrow b .\overrightarrow b  = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 2\overrightarrow a .\overrightarrow b \)

\( \bullet \) B đúng, vì \({\left| {\overrightarrow a  - \overrightarrow b } \right|^2} = {\left( {\overrightarrow a  - \overrightarrow b } \right)^2} = \left( {\overrightarrow a  - \overrightarrow b } \right).\left( {\overrightarrow a  - \overrightarrow b } \right) = \overrightarrow a .\overrightarrow a  - \overrightarrow a .\overrightarrow b  - \overrightarrow b .\overrightarrow a  + \overrightarrow b .\overrightarrow b  = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} - 2\overrightarrow a .\overrightarrow b \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Sai

c) Sai

d) Đúng

Cho hình thoi \(ABCD\) có cạnh bằng 2 và góc \(B\) bằng \({60^^\circ }\). Khi đó:  a) \((\overrightarrow {A (ảnh 1) 

Xét hình thoi \(ABCD\) có ABC^=60°BAD^=120°; tam giác \(ABC\) có AB=BC=2,ABC^=60°ΔABC đều cạnh 2OB=232=3

Ta có: (AB,AC)=BAC^=60°  ; (AB,DA)=180°(AB,AD)=180°BAD^=180°120°=60°

Ta có: DADC=|DA||DC|cos(DA,DC)=DADCcosADC^=22cos60°=2;

OBBA=BOBA=|BO||BA|cosABO^=BOBAcos30°=3232=3.

Lời giải

Gọi \(I\) là trung điểm của \(AB\) ta có:

\(\overrightarrow {MA}  \cdot \overrightarrow {MB}  = \frac{{3{a^2}}}{4} \Leftrightarrow (\overrightarrow {MI}  + \overrightarrow {IA} )(\overrightarrow {MI}  + \overrightarrow {IB} ) = \frac{{3{a^2}}}{4}\)

\( \Leftrightarrow (\overrightarrow {MI}  + \overrightarrow {IA} )(\overrightarrow {MI}  - \overrightarrow {IA} ) = \frac{{3{a^2}}}{4} \Leftrightarrow M{I^2} - I{A^2} = \frac{{3{a^2}}}{4}\)\(\)

\(\mathop  \Leftrightarrow \limits^{IA = \frac{a}{2}} M{I^2} = \frac{{{a^2}}}{4} + \frac{{3{a^2}}}{4} \Leftrightarrow MI = a.\)

Vậy tập hợp điểm \(M\) là đường tròn tâm \(I\) bán kính \(R = a\).