Câu hỏi:

12/10/2025 15 Lưu

Cho tam giác đều \(ABC\) có cạnh bằng \(a\) và chiều cao \(AH\). Mệnh đề nào sau đây là sai?

A. \(\overrightarrow {AH} .\overrightarrow {BC} = 0\)                                   
B. \(\left( {\overrightarrow {AB} ,\overrightarrow {HA} } \right) = {150^0}\)                      
C. \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{{{a^2}}}{2}\)   
D. \(\overrightarrow {AC} .\overrightarrow {CB} = \frac{{{a^2}}}{2}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Xác định được góc \(\left( {\overrightarrow {AC} ,\overrightarrow {CB} } \right)\) là góc ngoài của góc \(\widehat A\) nên \(\left( {\overrightarrow {AC} ,\overrightarrow {CB} } \right) = {120^0}\)

Do đó \(\overrightarrow {AC} .\overrightarrow {CB}  = AC.CB.cos\left( {\overrightarrow {AC} ,\overrightarrow {CB} } \right) = a.a.cos{120^0} =  - \frac{{{a^2}}}{2}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Sai

c) Đúng

d) Đúng

 

Ta có: \(\overrightarrow {AE}  = \overrightarrow {AB}  + \overrightarrow {BE}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {BC}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \).

\(\begin{array}{l}\overrightarrow {AF}  = \overrightarrow {AB}  + \overrightarrow {BF}  = \overrightarrow {AB}  + \frac{3}{4}\overrightarrow {BD}  = \overrightarrow {AB}  + \frac{3}{4}(\overrightarrow {AD}  - \overrightarrow {AB} ) = \frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} .\\\overrightarrow {EF}  = \overrightarrow {AF}  - \overrightarrow {AE}  = \left( {\frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} } \right) - \left( {\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} } \right) = \frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} .\end{array}\)

Ta có: \(\overrightarrow {AF}  \cdot \overrightarrow {EF}  = \left( {\frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} } \right) \cdot \left( {\frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} } \right)\)

\( = \frac{{ - 3}}{{16}}{\overrightarrow {AB} ^2} - \frac{1}{2}\overrightarrow {AB}  \cdot \overrightarrow {AD}  + \frac{3}{{16}}{\overrightarrow {AD} ^2} = 0 \Rightarrow AF \bot EF{\rm{. }}\)

Ta có: \({\overrightarrow {AF} ^2} = {\left( {\frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} } \right)^2} = \frac{1}{{16}}{\overrightarrow {AB} ^2} + \frac{3}{8}\overrightarrow {AB}  \cdot \overrightarrow {AD}  + \frac{9}{{16}}{\overrightarrow {AD} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2}\).

\({\overrightarrow {EF} ^2} = {\left( {\frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} } \right)^2} = \frac{9}{{16}}{\overrightarrow {AB} ^2} - \frac{3}{8}\overrightarrow {AB}  \cdot \overrightarrow {AD}  + \frac{1}{{16}}{\overrightarrow {AD} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2}.\)

\( \Rightarrow A{F^2} = E{F^2} = \frac{5}{8}{\overrightarrow {AB} ^2} \Rightarrow AF = EF\). Vậy tam giác \(AEF\) vuông cân tại \(F\).

Chú ý: Ta có thể chứng minh tam giác \(AEF\) vuông bằng định lí Pythagore.

Lời giải

Cho tam giác \(ABC\) cân tại \(A\). Gọi \(H\) là trung điểm của \(BC,D\) là hình chiếu của \(H\) trên \(AC,M\) là trung điểm của \(HD\). Tính \(\overrightarrow {AM}  \cdot \overrightarrow {BD} \) (ảnh 1)

Ta cần chứng minh: \(\overrightarrow {AM}  \cdot \overrightarrow {BD}  = 0\). Ta có: \(\overrightarrow {BD}  = \overrightarrow {BH}  + \overrightarrow {HD}  = \overrightarrow {HC}  + \overrightarrow {HD} ;\overrightarrow {AM}  = \frac{1}{2}(\overrightarrow {AH}  + \overrightarrow {AD} )\)

Do đó: \(\overrightarrow {AM}  \cdot \overrightarrow {BD}  = \frac{1}{2}(\overrightarrow {AH}  + \overrightarrow {AD} )(\overrightarrow {HC}  + \overrightarrow {HD} )\)\( = \frac{1}{2}(\overrightarrow {AH}  \cdot \overrightarrow {HC}  + \overrightarrow {AH}  \cdot \overrightarrow {HD}  + \overrightarrow {AD}  \cdot \overrightarrow {HC}  + \overrightarrow {AD}  \cdot \overrightarrow {HD} )\),

mà \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AH}  \cdot \overrightarrow {HC}  = 0({\rm{ do }}AH \bot BC)}\\{\overrightarrow {AD}  \cdot \overrightarrow {HD}  = 0({\rm{ do }}HD \bot AC)}\end{array}} \right.\)\( \Rightarrow \overrightarrow {AM}  \cdot \overrightarrow {BD}  = \frac{1}{2}(\overrightarrow {AH}  \cdot \overrightarrow {HD}  + \overrightarrow {AD}  \cdot \overrightarrow {HC} )\)

\( = \frac{1}{2}[\overrightarrow {AH}  \cdot \overrightarrow {HD}  + (\overrightarrow {AH}  + \overrightarrow {HD} ) \cdot \overrightarrow {HC} ]\)

\( = \frac{1}{2}(\overrightarrow {AH}  \cdot \overrightarrow {HD}  + \underbrace {\overrightarrow {AH}  \cdot \overrightarrow {HC} }_0 + \overrightarrow {HD}  \cdot \overrightarrow {HC} ) = \frac{1}{2}\overrightarrow {HD}  \cdot (\overrightarrow {AH}  + \overrightarrow {HC} ) = \frac{1}{2}\overrightarrow {HD}  \cdot \overrightarrow {AC}  = 0\).

Vậy \(AM \bot DB\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\overrightarrow {MA} .\overrightarrow {AB} = - MA.AB\].                     
B. \[\overrightarrow {MA} .\overrightarrow {MB} = - MA.MB\].
C. \[\overrightarrow {AM} .\overrightarrow {AB} = AM.AB\].                     
D. \[\overrightarrow {MA} .\overrightarrow {MB} = MA.MB\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP