Cho tam giác \(ABC\) vuông tại \(A\) và có \(AB = c,{\rm{ }}AC = b.\) Tính \(\overrightarrow {BA} .\overrightarrow {BC} .\)
Quảng cáo
Trả lời:
Chọn B
Ta có \(\overrightarrow {BA} .\overrightarrow {BC} = BA.BC.cos\left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = BA.BC.cos\widehat B = c.\sqrt {{b^2} + {c^2}} .\frac{c}{{\sqrt {{b^2} + {c^2}} }} = {c^2}\)
Cách khác. Tam giác \[ABC\] vuông tại \[A\] suy ra \[AB \bot AC\]\[ \Rightarrow \,\,\overrightarrow {AB} .\overrightarrow {AC} = 0\]
Ta có \[\overrightarrow {BA} .\overrightarrow {BC} = \overrightarrow {BA} .\left( {\overrightarrow {BA} + \overrightarrow {AC} } \right) = {\overrightarrow {BA} ^2} + \overrightarrow {BA} .\overrightarrow {AC} = A{B^2} = {c^2}\]
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Xét hình thoi \(ABCD\) có ; tam giác \(ABC\) có đều cạnh
Ta có: ;
Ta có: ;
Lời giải
Gọi \(I\) là trung điểm của \(AB\) ta có:
\(\overrightarrow {MA} \cdot \overrightarrow {MB} = \frac{{3{a^2}}}{4} \Leftrightarrow (\overrightarrow {MI} + \overrightarrow {IA} )(\overrightarrow {MI} + \overrightarrow {IB} ) = \frac{{3{a^2}}}{4}\)
\( \Leftrightarrow (\overrightarrow {MI} + \overrightarrow {IA} )(\overrightarrow {MI} - \overrightarrow {IA} ) = \frac{{3{a^2}}}{4} \Leftrightarrow M{I^2} - I{A^2} = \frac{{3{a^2}}}{4}\)\(\)
\(\mathop \Leftrightarrow \limits^{IA = \frac{a}{2}} M{I^2} = \frac{{{a^2}}}{4} + \frac{{3{a^2}}}{4} \Leftrightarrow MI = a.\)
Vậy tập hợp điểm \(M\) là đường tròn tâm \(I\) bán kính \(R = a\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

