Câu hỏi:

12/10/2025 77 Lưu

Cho hình vuông \(ABCD\), điểm \(M\) nằm trên đoạn thẳng \(AC\) sao cho \(AM = \frac{{AC}}{4}\). Gọi \(N\) là trung điểm \(CD\). Khi đó \(BMN\) là tam giác vuông cân tại đỉnh nào?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đặt \(\overrightarrow {AD}  = \vec a,\overrightarrow {AB}  = \vec b\).

Khi đó: \(\overrightarrow {AM}  = \frac{1}{4}\overrightarrow {AC}  = \frac{1}{4}(\vec a + \vec b)\)

\(\overrightarrow {AN}  = \overrightarrow {AD}  + \overrightarrow {DN}  = \vec a + \frac{1}{2}\vec b\)

\(\overrightarrow {MB}  = \overrightarrow {AB}  - \overrightarrow {AM}  = \vec b - \frac{1}{4}(\vec a + \vec b) = \frac{1}{4}( - \vec a + 3\vec b)\) và

\(\overrightarrow {MN}  = \overrightarrow {AN}  - \overrightarrow {AM}  = \vec a + \frac{1}{2}\vec b - \frac{1}{4}(\vec a + \vec b) = \frac{1}{4}(3\vec a + \vec b)\).

Ta có: \(\overrightarrow {MB}  \cdot \overrightarrow {MN}  = \frac{1}{{16}}( - \vec a + 3\vec b)(3\vec a + \vec b) = \frac{1}{{16}}\left( { - 3{{\vec a}^2} + 3{{\vec b}^2} + 8\vec a \cdot \vec b} \right)\)

\( = \frac{1}{{16}}\left( { - 3A{D^2} + 3A{B^2} + 0} \right) = 0 \Rightarrow MB \bot MN(1)\).

Hơn nữa: \({\overrightarrow {MB} ^2} = \frac{1}{{16}}{( - \vec a + 3\vec b)^2} = \frac{1}{{16}}\left( {{{\vec a}^2} + 9{{\vec b}^2} - 6\vec a \cdot \vec b} \right) = \frac{1}{{16}}\left( {A{D^2} + 9A{B^2} - 0} \right) = \frac{5}{8}A{B^2}\);

\({\overrightarrow {MN} ^2} = \frac{1}{{16}}{(3\vec a + \vec b)^2} = \frac{1}{{16}}\left( {9{{\vec a}^2} + {{\vec b}^2} + 6\vec a \cdot \vec b} \right) = \frac{1}{{16}}\left( {9A{D^2} + A{B^2} + 0} \right) = \frac{5}{8}A{B^2}\).

Suy ra \[MB = MN\](2). Từ (1) và (2) suy ra \(\Delta BMN\)vuông cân tại đỉnh \[M.\]\(\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Sai

c) Sai

d) Đúng

Cho hình thoi \(ABCD\) có cạnh bằng 2 và góc \(B\) bằng \({60^^\circ }\). Khi đó:  a) \((\overrightarrow {A (ảnh 1) 

Xét hình thoi \(ABCD\) có ABC^=60°BAD^=120°; tam giác \(ABC\) có AB=BC=2,ABC^=60°ΔABC đều cạnh 2OB=232=3

Ta có: (AB,AC)=BAC^=60°  ; (AB,DA)=180°(AB,AD)=180°BAD^=180°120°=60°

Ta có: DADC=|DA||DC|cos(DA,DC)=DADCcosADC^=22cos60°=2;

OBBA=BOBA=|BO||BA|cosABO^=BOBAcos30°=3232=3.

Lời giải

Gọi \(I\) là trung điểm của \(AB\) ta có:

\(\overrightarrow {MA}  \cdot \overrightarrow {MB}  = \frac{{3{a^2}}}{4} \Leftrightarrow (\overrightarrow {MI}  + \overrightarrow {IA} )(\overrightarrow {MI}  + \overrightarrow {IB} ) = \frac{{3{a^2}}}{4}\)

\( \Leftrightarrow (\overrightarrow {MI}  + \overrightarrow {IA} )(\overrightarrow {MI}  - \overrightarrow {IA} ) = \frac{{3{a^2}}}{4} \Leftrightarrow M{I^2} - I{A^2} = \frac{{3{a^2}}}{4}\)\(\)

\(\mathop  \Leftrightarrow \limits^{IA = \frac{a}{2}} M{I^2} = \frac{{{a^2}}}{4} + \frac{{3{a^2}}}{4} \Leftrightarrow MI = a.\)

Vậy tập hợp điểm \(M\) là đường tròn tâm \(I\) bán kính \(R = a\).