Cho hình vuông \(ABCD\), điểm \(M\) nằm trên đoạn thẳng \(AC\) sao cho \(AM = \frac{{AC}}{4}\). Gọi \(N\) là trung điểm \(CD\). Khi đó \(BMN\) là tam giác vuông cân tại đỉnh nào?
Cho hình vuông \(ABCD\), điểm \(M\) nằm trên đoạn thẳng \(AC\) sao cho \(AM = \frac{{AC}}{4}\). Gọi \(N\) là trung điểm \(CD\). Khi đó \(BMN\) là tam giác vuông cân tại đỉnh nào?
Quảng cáo
Trả lời:

Đặt \(\overrightarrow {AD} = \vec a,\overrightarrow {AB} = \vec b\).
Khi đó: \(\overrightarrow {AM} = \frac{1}{4}\overrightarrow {AC} = \frac{1}{4}(\vec a + \vec b)\)
\(\overrightarrow {AN} = \overrightarrow {AD} + \overrightarrow {DN} = \vec a + \frac{1}{2}\vec b\)
\(\overrightarrow {MB} = \overrightarrow {AB} - \overrightarrow {AM} = \vec b - \frac{1}{4}(\vec a + \vec b) = \frac{1}{4}( - \vec a + 3\vec b)\) và
\(\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} = \vec a + \frac{1}{2}\vec b - \frac{1}{4}(\vec a + \vec b) = \frac{1}{4}(3\vec a + \vec b)\).
Ta có: \(\overrightarrow {MB} \cdot \overrightarrow {MN} = \frac{1}{{16}}( - \vec a + 3\vec b)(3\vec a + \vec b) = \frac{1}{{16}}\left( { - 3{{\vec a}^2} + 3{{\vec b}^2} + 8\vec a \cdot \vec b} \right)\)
\( = \frac{1}{{16}}\left( { - 3A{D^2} + 3A{B^2} + 0} \right) = 0 \Rightarrow MB \bot MN(1)\).
Hơn nữa: \({\overrightarrow {MB} ^2} = \frac{1}{{16}}{( - \vec a + 3\vec b)^2} = \frac{1}{{16}}\left( {{{\vec a}^2} + 9{{\vec b}^2} - 6\vec a \cdot \vec b} \right) = \frac{1}{{16}}\left( {A{D^2} + 9A{B^2} - 0} \right) = \frac{5}{8}A{B^2}\);
\({\overrightarrow {MN} ^2} = \frac{1}{{16}}{(3\vec a + \vec b)^2} = \frac{1}{{16}}\left( {9{{\vec a}^2} + {{\vec b}^2} + 6\vec a \cdot \vec b} \right) = \frac{1}{{16}}\left( {9A{D^2} + A{B^2} + 0} \right) = \frac{5}{8}A{B^2}\).
Suy ra \[MB = MN\](2). Từ (1) và (2) suy ra \(\Delta BMN\)vuông cân tại đỉnh \[M.\]\(\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Ta có: \(\overrightarrow {AE} = \overrightarrow {AB} + \overrightarrow {BE} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {BC} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \).
\(\begin{array}{l}\overrightarrow {AF} = \overrightarrow {AB} + \overrightarrow {BF} = \overrightarrow {AB} + \frac{3}{4}\overrightarrow {BD} = \overrightarrow {AB} + \frac{3}{4}(\overrightarrow {AD} - \overrightarrow {AB} ) = \frac{1}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AD} .\\\overrightarrow {EF} = \overrightarrow {AF} - \overrightarrow {AE} = \left( {\frac{1}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AD} } \right) - \left( {\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} } \right) = \frac{{ - 3}}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AD} .\end{array}\)
Ta có: \(\overrightarrow {AF} \cdot \overrightarrow {EF} = \left( {\frac{1}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AD} } \right) \cdot \left( {\frac{{ - 3}}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AD} } \right)\)
\( = \frac{{ - 3}}{{16}}{\overrightarrow {AB} ^2} - \frac{1}{2}\overrightarrow {AB} \cdot \overrightarrow {AD} + \frac{3}{{16}}{\overrightarrow {AD} ^2} = 0 \Rightarrow AF \bot EF{\rm{. }}\)
Ta có: \({\overrightarrow {AF} ^2} = {\left( {\frac{1}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AD} } \right)^2} = \frac{1}{{16}}{\overrightarrow {AB} ^2} + \frac{3}{8}\overrightarrow {AB} \cdot \overrightarrow {AD} + \frac{9}{{16}}{\overrightarrow {AD} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2}\).
\({\overrightarrow {EF} ^2} = {\left( {\frac{{ - 3}}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AD} } \right)^2} = \frac{9}{{16}}{\overrightarrow {AB} ^2} - \frac{3}{8}\overrightarrow {AB} \cdot \overrightarrow {AD} + \frac{1}{{16}}{\overrightarrow {AD} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2}.\)
\( \Rightarrow A{F^2} = E{F^2} = \frac{5}{8}{\overrightarrow {AB} ^2} \Rightarrow AF = EF\). Vậy tam giác \(AEF\) vuông cân tại \(F\).
Chú ý: Ta có thể chứng minh tam giác \(AEF\) vuông bằng định lí Pythagore.
Lời giải
Ta cần chứng minh: \(\overrightarrow {AM} \cdot \overrightarrow {BD} = 0\). Ta có: \(\overrightarrow {BD} = \overrightarrow {BH} + \overrightarrow {HD} = \overrightarrow {HC} + \overrightarrow {HD} ;\overrightarrow {AM} = \frac{1}{2}(\overrightarrow {AH} + \overrightarrow {AD} )\)
Do đó: \(\overrightarrow {AM} \cdot \overrightarrow {BD} = \frac{1}{2}(\overrightarrow {AH} + \overrightarrow {AD} )(\overrightarrow {HC} + \overrightarrow {HD} )\)\( = \frac{1}{2}(\overrightarrow {AH} \cdot \overrightarrow {HC} + \overrightarrow {AH} \cdot \overrightarrow {HD} + \overrightarrow {AD} \cdot \overrightarrow {HC} + \overrightarrow {AD} \cdot \overrightarrow {HD} )\),
mà \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AH} \cdot \overrightarrow {HC} = 0({\rm{ do }}AH \bot BC)}\\{\overrightarrow {AD} \cdot \overrightarrow {HD} = 0({\rm{ do }}HD \bot AC)}\end{array}} \right.\)\( \Rightarrow \overrightarrow {AM} \cdot \overrightarrow {BD} = \frac{1}{2}(\overrightarrow {AH} \cdot \overrightarrow {HD} + \overrightarrow {AD} \cdot \overrightarrow {HC} )\)
\( = \frac{1}{2}[\overrightarrow {AH} \cdot \overrightarrow {HD} + (\overrightarrow {AH} + \overrightarrow {HD} ) \cdot \overrightarrow {HC} ]\)
\( = \frac{1}{2}(\overrightarrow {AH} \cdot \overrightarrow {HD} + \underbrace {\overrightarrow {AH} \cdot \overrightarrow {HC} }_0 + \overrightarrow {HD} \cdot \overrightarrow {HC} ) = \frac{1}{2}\overrightarrow {HD} \cdot (\overrightarrow {AH} + \overrightarrow {HC} ) = \frac{1}{2}\overrightarrow {HD} \cdot \overrightarrow {AC} = 0\).
Vậy \(AM \bot DB\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.