Câu hỏi:

12/10/2025 196 Lưu

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho tứ giác \(ABCD\). Gọi \(I,J\) lần lượt là trung điểm \(AB\) và \(CD,K\) là trung điểm \(IJ,M\) là điểm bất kì. Khi đó:

a) \(\overrightarrow {AC}  + \overrightarrow {BD}  = 2\overrightarrow {IJ} \)

b) \(\overrightarrow {AD}  + \overrightarrow {BC}  = 2\overrightarrow {IJ} \)

c) \(\overrightarrow {MI}  + \overrightarrow {MJ}  = \overrightarrow {MK} \)

d) \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MK} \)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Đúng

c) Sai

d) Đúng

 

a) \(\overrightarrow {AC}  + \overrightarrow {BD}  = \overrightarrow {AI}  + \overrightarrow {IJ}  + \overrightarrow {JC}  + \overrightarrow {BI}  + \overrightarrow {IJ}  + \overrightarrow {JD} \)

\( = (\overrightarrow {AI}  + \overrightarrow {BI} ) + 2\overrightarrow {IJ}  + (\overrightarrow {JC}  + \overrightarrow {JD} ) = 2\overrightarrow {IJ} \)

b) \(\overrightarrow {AD}  + \overrightarrow {BC}  = \overrightarrow {AI}  + \overrightarrow {IJ}  + \overrightarrow {JD}  + \overrightarrow {BI}  + \overrightarrow {IJ}  + \overrightarrow {JC} \)

\( = (\overrightarrow {AI}  + \overrightarrow {BI} ) + 2\overrightarrow {IJ}  + (\overrightarrow {JD}  + \overrightarrow {JC} ) = 2\overrightarrow {IJ} \)

c) \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 2\overrightarrow {MI}  + 2\overrightarrow {MJ}  = 2(\overrightarrow {MI}  + \overrightarrow {MJ} ) = 4\overrightarrow {MK} \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\overrightarrow {NM}  = \frac{1}{3}\overrightarrow {AB}  - \overrightarrow {AD} ,\overrightarrow {NP}  = \frac{2}{3}\overrightarrow {AB}  - \frac{1}{2}\overrightarrow {AD} \)

Suy ra \(\overrightarrow {NM}  \cdot \overrightarrow {NP}  = \frac{2}{9} \cdot 9 + \frac{1}{2} \cdot 9 = \frac{{13}}{2}\)

Mặt khác \(|\overrightarrow {NM} | = \sqrt {10} ,|\overrightarrow {NP} | = \frac{5}{2} \Rightarrow \cos \widehat {MNP} = \frac{{13}}{{5\sqrt {10} }}.\)

Lời giải

Cho tam giác \(ABC\) có \(M\) là tru (ảnh 1)

a) Do tứ giác \(BHC{A^\prime }\) có \(BH//{A^\prime }C( \bot AC)\) và \(CH//B{A^\prime }( \bot AB)\) nên \(BHC{A^\prime }\) là hình bình hành \( \Rightarrow \overrightarrow {BH}  = \overrightarrow {{A^\prime }C} \)

b) Lại có \(M\) là trung điểm của đường chéo \(BC\) nên \(M\) là trung điểm của \(H{A^\prime }\) hay \(H,M\), \({A^\prime }\) thẳng hàng.

Do \(OM\) là đường trung bình của  nên \(AH = 2OM\), mà \(\overrightarrow {AH} \) và \(\overrightarrow {OM} \) cùng hướng

\( \Rightarrow \overrightarrow {AH}  = 2\overrightarrow {OM} {\rm{. }}\)

c) \(\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC}  = \overrightarrow {HA} \overrightarrow { + HA} \) (Tứ giác \(AHC{A^\prime }\) là hình bình hành \(\overrightarrow {H{A^\prime }}  = \overrightarrow {HB}  + \overrightarrow {HC}  = 2\overrightarrow {HO} \)

d) \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OH}  + \overrightarrow {HA}  + \overrightarrow {OH}  + \overrightarrow {HB}  + \overrightarrow {OH}  + \overrightarrow {HC}  = 3\overrightarrow {OH}  + \overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC} \)

\( = 3\overrightarrow {OH}  + 2\overrightarrow {HO}  = \overrightarrow {OH} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\overrightarrow {GM} = \frac{1}{6}\overrightarrow {BC} \)           
B. \(\overrightarrow {GM} = \frac{1}{6}\overrightarrow {CA} \)           
C. \(\overrightarrow {GM} = \frac{1}{6}\overrightarrow {AB} \)           
D. \(\overrightarrow {GM} = \frac{1}{3}\overrightarrow {CB} \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Miền (1)                  
B. Miền (2)               
C. Miền (3)                                  
D. Ở ngoài \(\Delta ABC\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP