Câu hỏi:

25/10/2025 3 Lưu

Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Theo kế hoạch, một phân xưởng phải làm xong 900 sản phẩm trong một số ngày quy định. Thực tế, mỗi ngày phân xưởng đã làm được nhiều hơn 15 sản phẩm so với số sản phẩm phải làm trong một ngày theo kế hoạch. Vì thế 3 ngày trước khi hết thời hạn, phân xưởng đã làm xong 900 sản phẩm. Hỏi theo kế hoạch, mỗi ngày phân xưởng phải làm bao nhiêu sản phẩm? (Giả định rằng số sản phẩm mà phân xưởng làm được trong mỗi ngày là bằng nhau.)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi số sản phẩm mỗi ngày phân xưởng phải làm theo kế hoạch là \(x\) (sản phẩm) \(\left( {x \in {\mathbb{N}^{\rm{*}}},x < 900} \right)\).

Do đó, theo kế hoạch, thời gian phân xưởng làm xong 900 sản phẩm là \(\frac{{900}}{x}\) (ngày).

Thực tế, mỗi ngày, phân xưởng đã làm được nhiều hơn 15 sản phẩm so với số sản phẩm phải làm trong một ngày theo kế hoạch nên thực tế, số sản phẩm mỗi ngày phân xưởng phải làm là \(x + 15\) (sản phẩm).

Do đó, thực tế, thời gian phân xưởng làm xong 900 sản phẩm là \(\frac{{900}}{{x + 15}}\) (ngày).

Vì phân xưởng đã làm xong 900 sản phẩm 3 ngày trước khi hết thời hạn nên ta có phương trình: \(\frac{{900}}{{x + 15}} + 3 = \frac{{900}}{x}\)

\( \Leftrightarrow \frac{{900}}{x} - \frac{{900}}{{x + 15}} = 3\)

\( \Leftrightarrow 900\left( {\frac{1}{x} - \frac{1}{{x + 15}}} \right) = 3\)

\( \Leftrightarrow 300.\frac{{x + 15 - x}}{{x\left( {x + 15} \right)}} = 1\)

\( \Leftrightarrow 300.\frac{{15}}{{x\left( {x + 15} \right)}} = 1\)

\( \Rightarrow {x^2} + 15x = 4500\)

\( \Leftrightarrow {x^2} + 15x - 4500 = 0\)

\( \Leftrightarrow \left( {x - 60} \right)\left( {x + 75} \right) = 0\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 60}\\{x =  - 75}\end{array}} \right.\)

Đối chiếu điều kiện ta thấy \(x = 60\) thỏa mãn.

Vậy số sản phẩm mỗi ngày phân xưởng phải làm theo kế hoạch là 60 sản phẩm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác (ABC) có ba góc nhọn (AB < AC), nội tiếp đường tròn  (ảnh 1)

1) Chứng minh tứ giác \(SAOI\) là tứ giác nội tiếp.

Có \(SA\) là tiếp tuyến nên \(SA \bot OA\) \( \Rightarrow \widehat {SAO} = 90^\circ \).

Vì \(OI \bot BC\left( {gt} \right) \Rightarrow \widehat {SIO} = 90^\circ \)

Tứ giác \(SAOI\) có \[\widehat {SAO} + \widehat {SIO} = 90^\circ  + 90^\circ  = 180^\circ \], mà hai góc này ở vị trí đối nhau

Suy ra \(SAOI\) là tứ giác nội tiếp.

2) Chứng minh \(\widehat {OAH} = \widehat {IAD}\).

Vì \(SAOI\) là tứ giác nội tiếp nên \(\widehat {SOA} = \widehat {SIA}\) (hai góc nội tiếp cùng chắn cung \(SA\))

Hay \(\widehat {AOH} = \widehat {AID}\left( 1 \right)\)

\({\rm{\Delta }}AHO\) vuông tại \(H\left( {AH \bot SO} \right)\) nên \(\widehat {AOH} + \widehat {OAH} = 90^\circ  \Rightarrow \widehat {OAH} = 90^\circ  - \widehat {AOH}\left( 2 \right)\)

\({\rm{\Delta }}ADI\) vuông tại \(H\left( {AD \bot SC} \right)\) nên \(\widehat {AID} + \widehat {IAD} = 90^\circ  \Rightarrow \widehat {IAD} = 90^\circ  - \widehat {AID}\left( 3 \right)\).

Từ \(\left( 1 \right),\left( 2 \right),\left( 3 \right)\) ta có \(\widehat {OAH} = \widehat {IAD}\).

3) Chứng minh \(BQ.BA = BD.BI\) và đường thẳng \(CK\) song song với đường thẳng \(SO\).

* Chứng minh \(BQ.BA = BD.BI\)

Cách 1:

Xét tứ giác \(AEDC\) có \(\widehat {AEC} = \widehat {ADC} = 90^\circ \), mà hai góc này cùng nhìn cạnh \(AC\)

Do đó tứ giác \(AEDC\) nội tiếp suy ra \(\widehat {AED} + \widehat {DCA} = 180^\circ \)

Mà \(\widehat {AED} + \widehat {BED} = 180^\circ \) (kề bù), suy ra \[\widehat {BED} = \widehat {DCA}\]

Xét \(\Delta BED\) và \(\Delta BCA\) có: \(\widehat {ABC}\) chung; \[\widehat {BED} = \widehat {BCA}\]

Do đó

\( \Rightarrow \frac{{BE}}{{BC}} = \frac{{BD}}{{BA}}\) (tỉ số đồng dạng)

\( \Rightarrow BD.BC = BE.BA\)

\( \Rightarrow \frac{1}{2}BC.BD = \frac{1}{2}BE.BA\)

\( \Rightarrow BI.BD = BQ.BA\)

Suy ra tứ giác \(QDIA\) nội tiếp.

Cách 2:

Xét \(\Delta BCE\) có \(Q,I\) lần lượt là trung điểm của \(BE,BC\) nên \(QI\) là đường trung bình của tam giác

\( \Rightarrow QI\,{\rm{//}}\,EC\), mà \(AB \bot EC\) nên \(AB \bot QI\) hay \(\widehat {AQI} = 90^\circ \)

Xét tứ giác \(AQDI\) có \[\widehat {AQI} = \widehat {ADI} = 90^\circ \], mà hai góc này cùng nhìn cạnh \(AI\)

Do đó tứ giác \(AQDI\) nội tiếp \( \Rightarrow BQ.BA = BI.BD\)

* Chứng minh \(CK\,{\rm{//}}\,SO\).

Ta có \(\widehat {BAD} = 90^\circ  - \widehat {ABC} = 90^\circ  - \frac{{\widehat {AOC}}}{2} = \widehat {OAC}\)

Mà \[\widehat {IAD} = \widehat {OAH}\] (theo câu b) nên \(\widehat {BAI} = \widehat {KAC}\)

Lại có tứ giác \(AQDI\) nội tiếp nên \[\widehat {BDQ} = \widehat {BAI} = \widehat {KAC}\]

Mà \[\widehat {CDK} = \widehat {BDQ}\], do đó \[\widehat {CDK} = \widehat {KAC}\]

Suy ra tứ giác \(ADKC\) nội tiếp.

\( \Rightarrow \widehat {CKA} = \widehat {CDA} = 90^\circ  \Rightarrow CK \bot AK\).

Mà \(AK \bot SO\) nên \(CK\,{\rm{//}}\,SO\).

Lời giải

1) Tính giá trị biểu thức \(A\) khi \(x = 9\).

Thay \(x = 9\) (tmđk) vào \(A\) ta được \(A = \frac{{9 + 2}}{{\sqrt 9 }} = \frac{{11}}{3}\).

Vậy \(A = \frac{{11}}{3}\) khi \(x = 9\).

2) Chứng minh \(B = \frac{{\sqrt x }}{{\sqrt x  + 1}}\).

Với \(x > 0,x \ne 1\) ta có:

\(B = \frac{{2\sqrt x  - 3}}{{\sqrt x  - 1}} + \frac{{3 - \sqrt x }}{{x - 1}}\)

\( = \frac{{2\sqrt x  - 3}}{{\sqrt x  - 1}} + \frac{{3 - \sqrt x }}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\)

\( = \frac{{\left( {2\sqrt x  - 3} \right)\left( {\sqrt x  + 1} \right)}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}} + \frac{{3 - \sqrt x }}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\)

\[ = \frac{{2x + 2\sqrt x  - 3\sqrt x  - 3 + 3 - \sqrt x }}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\]

\( = \frac{{2x - 2\sqrt x }}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\)

\( = \frac{{2\sqrt x \left( {\sqrt x  - 1} \right)}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\)

\( = \frac{{2\sqrt x }}{{\sqrt x  + 1}}\).

Vậy với \(x > 0,x \ne 1\) thì \(B = \frac{{2\sqrt x }}{{\sqrt x  + 1}}\).

3) Tìm tất cả các giá trị của \(x\) để \(A.B = 4\).

Với \(x > 0,x \ne 1\) ta có: \(AB = 4\)\( \Leftrightarrow \frac{{x + 2}}{{\sqrt x }} \cdot \frac{{2\sqrt x }}{{\sqrt x  + 1}} = 4\)

\( \Leftrightarrow \frac{{x + 2}}{{\sqrt x  + 1}} = 2\)

\( \Rightarrow x + 2 = 2\left( {\sqrt x  + 1} \right)\)

\( \Leftrightarrow x - 2\sqrt x  = 0\)

\( \Leftrightarrow \sqrt x \left( {\sqrt x  - 2} \right) = 0\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\sqrt x  = 0}\\{\sqrt x  = 2}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0\left( {ktm} \right)}\\{x = 4\left( {tm} \right)}\end{array}} \right.\)

Vậy \(x = 4\) thì \(AB = 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP