Câu hỏi:

25/10/2025 4 Lưu

2) Trong mặt phẳng toạ độ \(Oxy\), cho parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = \left( {m + 2} \right)x - m\).

a) Chứng minh \(\left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt.

b) Gọi \({x_1}\) và \({x_2}\) là hoành độ các giao điểm của \(\left( d \right)\) và \(\left( P \right)\). Tìm tất cả giá trị của \(m\) để \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{1}{{{x_1} + {x_2} - 2}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

2a) Chứng minh \(\left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt.

Xét phương trình hoành độ giao điểm:

\({x^2} = \left( {m + 2} \right)x - m \Leftrightarrow {x^2} - \left( {m + 2} \right)x + m = 0\)

Ta có \[{\rm{\Delta }} = {\left( {m + 2} \right)^2} - 4m = {m^2} + 4 \ge 4 > 0\] với mọi \(x \in \mathbb{R}\) nên phương trình \[\left( 1 \right)\] luôn có hai nghiệm phân biệt, do đó \(\left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt.

2b) Tìm tất cả giá trị của \(m\) để \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{1}{{{x_1} + {x_2} - 2}}\).

Áp dụng định lí Viet ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = m + 2}\\{{x_1}{x_2} = m}\end{array}} \right.\)

\(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{1}{{{x_1} + {x_2} - 2}} \Leftrightarrow \frac{{{x_1} + {x_2}}}{{{x_1}{x_2}}} = \frac{1}{{{x_1} + {x_2} - 2}}\)

Khi đó ta được \(\frac{{m + 2}}{m} = \frac{1}{m}\left( {m \ne 0} \right) \Leftrightarrow m =  - 1\) (tmđk)

Vậy \(m =  - 1\) thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác (ABC) có ba góc nhọn (AB < AC), nội tiếp đường tròn  (ảnh 1)

1) Chứng minh tứ giác \(SAOI\) là tứ giác nội tiếp.

Có \(SA\) là tiếp tuyến nên \(SA \bot OA\) \( \Rightarrow \widehat {SAO} = 90^\circ \).

Vì \(OI \bot BC\left( {gt} \right) \Rightarrow \widehat {SIO} = 90^\circ \)

Tứ giác \(SAOI\) có \[\widehat {SAO} + \widehat {SIO} = 90^\circ  + 90^\circ  = 180^\circ \], mà hai góc này ở vị trí đối nhau

Suy ra \(SAOI\) là tứ giác nội tiếp.

2) Chứng minh \(\widehat {OAH} = \widehat {IAD}\).

Vì \(SAOI\) là tứ giác nội tiếp nên \(\widehat {SOA} = \widehat {SIA}\) (hai góc nội tiếp cùng chắn cung \(SA\))

Hay \(\widehat {AOH} = \widehat {AID}\left( 1 \right)\)

\({\rm{\Delta }}AHO\) vuông tại \(H\left( {AH \bot SO} \right)\) nên \(\widehat {AOH} + \widehat {OAH} = 90^\circ  \Rightarrow \widehat {OAH} = 90^\circ  - \widehat {AOH}\left( 2 \right)\)

\({\rm{\Delta }}ADI\) vuông tại \(H\left( {AD \bot SC} \right)\) nên \(\widehat {AID} + \widehat {IAD} = 90^\circ  \Rightarrow \widehat {IAD} = 90^\circ  - \widehat {AID}\left( 3 \right)\).

Từ \(\left( 1 \right),\left( 2 \right),\left( 3 \right)\) ta có \(\widehat {OAH} = \widehat {IAD}\).

3) Chứng minh \(BQ.BA = BD.BI\) và đường thẳng \(CK\) song song với đường thẳng \(SO\).

* Chứng minh \(BQ.BA = BD.BI\)

Cách 1:

Xét tứ giác \(AEDC\) có \(\widehat {AEC} = \widehat {ADC} = 90^\circ \), mà hai góc này cùng nhìn cạnh \(AC\)

Do đó tứ giác \(AEDC\) nội tiếp suy ra \(\widehat {AED} + \widehat {DCA} = 180^\circ \)

Mà \(\widehat {AED} + \widehat {BED} = 180^\circ \) (kề bù), suy ra \[\widehat {BED} = \widehat {DCA}\]

Xét \(\Delta BED\) và \(\Delta BCA\) có: \(\widehat {ABC}\) chung; \[\widehat {BED} = \widehat {BCA}\]

Do đó

\( \Rightarrow \frac{{BE}}{{BC}} = \frac{{BD}}{{BA}}\) (tỉ số đồng dạng)

\( \Rightarrow BD.BC = BE.BA\)

\( \Rightarrow \frac{1}{2}BC.BD = \frac{1}{2}BE.BA\)

\( \Rightarrow BI.BD = BQ.BA\)

Suy ra tứ giác \(QDIA\) nội tiếp.

Cách 2:

Xét \(\Delta BCE\) có \(Q,I\) lần lượt là trung điểm của \(BE,BC\) nên \(QI\) là đường trung bình của tam giác

\( \Rightarrow QI\,{\rm{//}}\,EC\), mà \(AB \bot EC\) nên \(AB \bot QI\) hay \(\widehat {AQI} = 90^\circ \)

Xét tứ giác \(AQDI\) có \[\widehat {AQI} = \widehat {ADI} = 90^\circ \], mà hai góc này cùng nhìn cạnh \(AI\)

Do đó tứ giác \(AQDI\) nội tiếp \( \Rightarrow BQ.BA = BI.BD\)

* Chứng minh \(CK\,{\rm{//}}\,SO\).

Ta có \(\widehat {BAD} = 90^\circ  - \widehat {ABC} = 90^\circ  - \frac{{\widehat {AOC}}}{2} = \widehat {OAC}\)

Mà \[\widehat {IAD} = \widehat {OAH}\] (theo câu b) nên \(\widehat {BAI} = \widehat {KAC}\)

Lại có tứ giác \(AQDI\) nội tiếp nên \[\widehat {BDQ} = \widehat {BAI} = \widehat {KAC}\]

Mà \[\widehat {CDK} = \widehat {BDQ}\], do đó \[\widehat {CDK} = \widehat {KAC}\]

Suy ra tứ giác \(ADKC\) nội tiếp.

\( \Rightarrow \widehat {CKA} = \widehat {CDA} = 90^\circ  \Rightarrow CK \bot AK\).

Mà \(AK \bot SO\) nên \(CK\,{\rm{//}}\,SO\).

Lời giải

1) Tính giá trị biểu thức \(A\) khi \(x = 9\).

Thay \(x = 9\) (tmđk) vào \(A\) ta được \(A = \frac{{9 + 2}}{{\sqrt 9 }} = \frac{{11}}{3}\).

Vậy \(A = \frac{{11}}{3}\) khi \(x = 9\).

2) Chứng minh \(B = \frac{{\sqrt x }}{{\sqrt x  + 1}}\).

Với \(x > 0,x \ne 1\) ta có:

\(B = \frac{{2\sqrt x  - 3}}{{\sqrt x  - 1}} + \frac{{3 - \sqrt x }}{{x - 1}}\)

\( = \frac{{2\sqrt x  - 3}}{{\sqrt x  - 1}} + \frac{{3 - \sqrt x }}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\)

\( = \frac{{\left( {2\sqrt x  - 3} \right)\left( {\sqrt x  + 1} \right)}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}} + \frac{{3 - \sqrt x }}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\)

\[ = \frac{{2x + 2\sqrt x  - 3\sqrt x  - 3 + 3 - \sqrt x }}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\]

\( = \frac{{2x - 2\sqrt x }}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\)

\( = \frac{{2\sqrt x \left( {\sqrt x  - 1} \right)}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\)

\( = \frac{{2\sqrt x }}{{\sqrt x  + 1}}\).

Vậy với \(x > 0,x \ne 1\) thì \(B = \frac{{2\sqrt x }}{{\sqrt x  + 1}}\).

3) Tìm tất cả các giá trị của \(x\) để \(A.B = 4\).

Với \(x > 0,x \ne 1\) ta có: \(AB = 4\)\( \Leftrightarrow \frac{{x + 2}}{{\sqrt x }} \cdot \frac{{2\sqrt x }}{{\sqrt x  + 1}} = 4\)

\( \Leftrightarrow \frac{{x + 2}}{{\sqrt x  + 1}} = 2\)

\( \Rightarrow x + 2 = 2\left( {\sqrt x  + 1} \right)\)

\( \Leftrightarrow x - 2\sqrt x  = 0\)

\( \Leftrightarrow \sqrt x \left( {\sqrt x  - 2} \right) = 0\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\sqrt x  = 0}\\{\sqrt x  = 2}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0\left( {ktm} \right)}\\{x = 4\left( {tm} \right)}\end{array}} \right.\)

Vậy \(x = 4\) thì \(AB = 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP