Câu hỏi:

27/10/2025 100 Lưu

Tìm cặp số là nghiệm của bất phương trình \[ - x + 3y - 2 > 0\]

A. \(\left( {0;0} \right)\).

B. \(\left( { - 1;2} \right)\). 
C. \(\left( {3;1} \right)\). 
D. \(\left( {1;1} \right)\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Thay lần lượt các cặp số \[\left( {x;y} \right)\]ở các đáp án vào bất phương trình \[ - x + 3y - 2 > 0\], chỉ có cặp số \[\left( { - 1;2} \right)\]thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\widehat {ATB} = \widehat {TBN} - \widehat {TAN} = 12,2^\circ \).

Áp dụng định lí sin cho tam giác \(TAB\): \(\frac{{TB}}{{\sin \widehat {TAB}}} = \frac{{AB}}{{\sin \widehat {ATB}}} \Rightarrow TB = \frac{{AB.\sin \widehat {TAB}}}{{\sin \widehat {ATB}}}\).

Xét tam giác vuông \(TBN\) ta có:

\(TN = TB.\sin \widehat {TBN} = \frac{{AB.\sin \widehat {TAB}.\sin \widehat {TBN}}}{{\sin \widehat {ATB}}} = \frac{{1536.\sin 27,4^\circ .\sin 39,6^\circ }}{{\sin 12,2^\circ }} \approx 2132,14\).

Vậy chiều cao ngọn núi xấp xỉ \(2132,14\) m.

Lời giải

Chọn C

Đường thẳng \(2x - 3y - 6 = 0\) đi qua hai điểm \(\left( {0; - 2} \right),\left( {3;0} \right)\) nên loại đáp án H2 và H4.

Mặt khác \(O\left( {0;0} \right)\) không thỏa mãn \(2x - 3y - 6 \le 0\) nên chọn hình H3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP