Câu hỏi:

01/11/2025 11 Lưu

Một số tự nhiên nhỏ hơn bình phương của nó 20 đơn vị. Tìm số tự nhiên đó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Bình phương của số tự nhiên \(x\) là \({x^2}\).

Vì số tự nhiên cần tìm nhỏ hơn bình phương của nó 20 đơn vị nên ta có phương trình:

\({x^2} - x = 20\)
\( \Leftrightarrow {x^2} - x - 20 = 0\)
\( \Leftrightarrow {x^2} - 5x + 4x - 20 = 0\)

\( \Leftrightarrow x\left( {x - 5} \right) + 4\left( {x - 5} \right) = 0\)
\( \Leftrightarrow \left( {x - 5} \right)\left( {x + 4} \right) = 0\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x - 5 = 0}\\{x + 4 = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 5\left( {{\rm{tm}}} \right)}\\{x =  - 4\left( {{\rm{ktm}}} \right)}\end{array}} \right.} \right.\)

Vậy số tự nhiên cần tìm là 5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi quãng đường lên dốc lúc đi là \(x\) (km), quãng đường xuống dốc lúc đi là \(y\) (km).

(ĐK: \(x,y > 0\))

Suy ra quãng đường lên dốc lúc về là \(y\) (km), xuống dốc lúc về là \(x\) (km).
Thời gian lúc đi là 16 phút \( = \frac{4}{{15}}\) giờ nên ta có phương trình:

\(\frac{x}{{10}} + \frac{y}{{15}} = \frac{4}{{15}}\)
\( \Leftrightarrow 3x + 2y = 8\)  \(\left( 1 \right)\)

Thời gian lúc về là 14 phút \( = \frac{7}{{30}}\) (giờ) nên ta có phương trình:

\(\frac{y}{{10}} + \frac{x}{{15}} = \frac{7}{{30}}\)
\( \Leftrightarrow 3x + 2y = 7\)  \(\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình:

\(\left\{ {\begin{array}{*{20}{l}}{3x + 2y = 8}\\{3y + 2x = 7}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{9x + 6y = 24}\\{4x + 6y = 14}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{5x = 10}\\{y = \frac{{7 - 2x}}{3}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = 1}\end{array}\left( {{\rm{tm}}} \right)} \right.} \right.} \right.} \right.\)

Vậy quãng đường \(AB\)  là \(2 + 1 = 3\,\,\left( {{\rm{km}}} \right)\).

Lời giải

Giải phương trình : \(3{x^2} - 7x + 2 = 0\).

Phương trình có: \({\rm{\Delta }} = {7^2} - 4.3.2 = 25 > 0\) nên phương trình có hai nghiệm phân biệt \(\left[ {\begin{array}{*{20}{l}}{{x_1} = \frac{{7 + \sqrt {25} }}{6} = 2}\\{{x_2} = \frac{{7 - \sqrt {25} }}{6} = \frac{1}{3}}\end{array}} \right.\).

Vậy phương trình đã cho có tập nghiệm \(S = \left\{ {\frac{1}{3};2} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP