Câu hỏi:

01/11/2025 68 Lưu

Một số tự nhiên nhỏ hơn bình phương của nó 20 đơn vị. Tìm số tự nhiên đó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Bình phương của số tự nhiên \(x\) là \({x^2}\).

Vì số tự nhiên cần tìm nhỏ hơn bình phương của nó 20 đơn vị nên ta có phương trình:

\({x^2} - x = 20\)
\( \Leftrightarrow {x^2} - x - 20 = 0\)
\( \Leftrightarrow {x^2} - 5x + 4x - 20 = 0\)

\( \Leftrightarrow x\left( {x - 5} \right) + 4\left( {x - 5} \right) = 0\)
\( \Leftrightarrow \left( {x - 5} \right)\left( {x + 4} \right) = 0\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x - 5 = 0}\\{x + 4 = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 5\left( {{\rm{tm}}} \right)}\\{x =  - 4\left( {{\rm{ktm}}} \right)}\end{array}} \right.} \right.\)

Vậy số tự nhiên cần tìm là 5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi quãng đường lên dốc lúc đi là \(x\) (km), quãng đường xuống dốc lúc đi là \(y\) (km).

(ĐK: \(x,y > 0\))

Suy ra quãng đường lên dốc lúc về là \(y\) (km), xuống dốc lúc về là \(x\) (km).
Thời gian lúc đi là 16 phút \( = \frac{4}{{15}}\) giờ nên ta có phương trình:

\(\frac{x}{{10}} + \frac{y}{{15}} = \frac{4}{{15}}\)
\( \Leftrightarrow 3x + 2y = 8\)  \(\left( 1 \right)\)

Thời gian lúc về là 14 phút \( = \frac{7}{{30}}\) (giờ) nên ta có phương trình:

\(\frac{y}{{10}} + \frac{x}{{15}} = \frac{7}{{30}}\)
\( \Leftrightarrow 3x + 2y = 7\)  \(\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình:

\(\left\{ {\begin{array}{*{20}{l}}{3x + 2y = 8}\\{3y + 2x = 7}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{9x + 6y = 24}\\{4x + 6y = 14}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{5x = 10}\\{y = \frac{{7 - 2x}}{3}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = 1}\end{array}\left( {{\rm{tm}}} \right)} \right.} \right.} \right.} \right.\)

Vậy quãng đường \(AB\)  là \(2 + 1 = 3\,\,\left( {{\rm{km}}} \right)\).

Lời giải

a) Xét hàm số \(y = \frac{1}{2}{x^2}\) có hệ số \(a = \frac{1}{2} > 0\) nên hàm số đồng biến khi \(x > 0\), nghịch biến khi \(x < 0\) và đồ thị của hàm số là parabol có bề lõm quay lên trên.

Ta có bảng giá trị:

\(x\)

\( - 4\)

\( - 2\)

0

2

4

\(y = \frac{1}{2}{x^2}\)

8

2

0

2

8

Vậy đồ thị hàm số \(\left( P \right):y = \frac{1}{2}{x^2}\) là parabol nhận trục \(Oy\) làm trục đối xứng và đi qua các điểm \(\left( { - 4;8} \right),\left( { - 2;2} \right),\left( {0;0} \right),\left( {2;2} \right),\left( {4;8} \right)\).

Đồ thị hàm số:

Cho hàm số y = 1/2x^2. (ảnh 1)

b) Xét phương trình hoành độ giao điểm của \(\left( P \right)\) và đường thẳng \(y = 8\) ta có:

\(\frac{1}{2}{x^2} = 8 \Leftrightarrow x = 16\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 4}\\{x =  - 4}\end{array}} \right.\)

Với \(x = 4 \Rightarrow A\left( { - 4;8} \right)\);

Với \(x =  - 4 \Rightarrow B\left( {4;8} \right)\) (do \(B\) có hoành độ dương).

Cho hàm số y = 1/2x^2. (ảnh 2)

Gọi \(K\) là giao điểm của đường thẳng \(y = 8\) với trục tung \( \Rightarrow K\left( {0;8} \right)\)

Ta có: \(\Delta AOB\) cân tại \(O\), có \(OK \bot AB,OK = 8{\rm{\;cm}},AB = 8{\rm{\;cm}}\)

\( \Rightarrow {S_{\Delta OAB}} = \frac{1}{2}OK.AB = \frac{1}{2}.8.8 = 32\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

Áp dụng định lý Pytago cho \(\Delta OBK\) vuông tại \(K\) ta có:

\(OB = \sqrt {O{K^2} + K{B^2}}  = \sqrt {{8^2} + {4^2}}  = 4\sqrt 5 \left( {{\rm{cm}}} \right)\)

Lại có: \({S_{\Delta OAB}} = \frac{1}{2}AH.OB = \frac{1}{2}.AH.4\sqrt 5  = 32 \Leftrightarrow AH = \frac{{16\sqrt 5 }}{5}\left( {{\rm{cm}}} \right)\)

Áp dụng định lý Pytago vào \(\Delta ABH\) vuông tại \(H\) ta có:

\(BH = \sqrt {A{B^2} - A{H^2}}  = \sqrt {{8^2} - {{\left( {\frac{{16\sqrt 5 }}{5}} \right)}^2}}  = \frac{{8\sqrt 5 }}{5}\left( {{\rm{cm}}} \right)\)

\( \Rightarrow {S_{\Delta ABH}} = \frac{1}{2}AH.BH\)\( = \frac{1}{2} \cdot \frac{{16\sqrt 5 }}{5} \cdot \frac{{8\sqrt 5 }}{5}\)\( = \frac{{64}}{5} = 12,8\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

Vậy diện tích tam giác \(ABH\) là \(12,8{\rm{\;c}}{{\rm{m}}^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP