Câu hỏi:

10/11/2025 14 Lưu

Lan muốn đống góp quà trung thu cho các cháu thiếu nhi bằng cách mua \(2\) loại kẹo từ số tiền tiết kiệm \(350\,\,000\)đồng của mình. Biết kẹo hương dâu giá \(32\,\,000\)đồng/ hộp, kẹo hương cam giá \(36\,\,000\)đồng/hộp. Lan đã mua \(x\) hộp kẹo hương dâu và \(y\) hộp kẹo hương cam. Bất phương trình nào sau đây mô tả điều kiện ràng buộc với \(x,y\)?

A. \(x + y \ge 35\);                                                   
B. \(32x + 36y \ge 350\);
C. \(32x + 36y \le 350\);                                          
D. \(36x + 32y \le 350\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Số tiền mà Lan bỏ ra để mua \(x\) hộp kẹo hương dâu và \(y\)hộp kẹo hương cam là:

\(32\,\,000x + 36\,\,000y\) (đồng).

Vì số tiền tiết kiệm của Lan chỉ có \(350\,\,000\)đồng nên ta có bất phương trình:

\(32\,\,000x + 36\,\,000y \le 350\,\,000\) hay \(32x + 36\,y \le 350\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Nửa chu vi tam giác \(ABC\ (ảnh 2)

Nửa chu vi tam giác \(ABC\) là: \(p = \frac{{4,3 + 7,5 + 3,7}}{2} = 7,75\,\left( {cm} \right)\).

Khi đó diện tích tam giác \(ABC\) là:

\({S_{ABC}} = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = \sqrt {7,75\left( {7,75 - 4,3} \right)\left( {7,75 - 7,5} \right)\left( {7,75 - 3,7} \right)} \)

\( \approx 5,2\,\,\left( {cm} \right)\).

Vành ngoài chiếc đĩa chính là đường tròn ngoại tiếp tam giác \(ABC\) nên bán kính chiếc đĩa chính là bán kính đường tròn ngoại tiếp tam giác \(ABC\) và bằng:

\(R = \frac{{abc}}{{4{S_{abc}}}} \approx \frac{{4,3.7,5.3,7}}{{4.5,2}} \approx 5,7\,\left( {cm} \right)\).

Vì vậy bán kính chiếc đĩa khoảng \(5,7\,\,cm\).

Câu 2

A. \(DF = \frac{{a\sqrt {13} }}{4}\);              
B. \(DF = \frac{{a\sqrt 5 }}{4}\);                                    
C.\(DF = \frac{{a\sqrt 3 }}{2}\);                                   
D. \(DF = \frac{{3a}}{4}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Hướng dẫn giải  Đáp án đúng là: C (ảnh 1)

Xét tam giác \(ABE\) vuông tại \(B\), có:

\(A{E^2} = A{B^2} + B{E^2}\) (định lí Py – ta – go)

\( \Leftrightarrow A{E^2} = {a^2} + {\left( {\frac{a}{2}} \right)^2} = \frac{{5{a^2}}}{4}\)

\( \Leftrightarrow AE = \frac{{\sqrt 5 a}}{2}\)

\( \Rightarrow AF = \frac{1}{2}AE = \frac{{\sqrt 5 a}}{4}\)

Ta lại có: \(\sin \widehat {BAE} = \frac{{BE}}{{AE}} \Leftrightarrow \sin \widehat {BAE} = \frac{{\frac{a}{2}}}{{\frac{{\sqrt 5 a}}{2}}} = \frac{1}{{\sqrt 5 }}\)

\( \Rightarrow {\rm{cos}}\widehat {DAF} = \frac{1}{{\sqrt 5 }}\) (vì \(\widehat {BAE} + \widehat {DAF} = 90^\circ \)).

Xét tam giác \(ADF\), có:

\(D{F^2} = A{D^2} + A{F^2} - 2.AD.AF\cos \widehat {DAF}\) (Áp dụng định lí cosin)

\( \Leftrightarrow D{F^2} = {a^2} + {\left( {\frac{{\sqrt 5 a}}{4}} \right)^2} - 2.a.\frac{{\sqrt 5 a}}{4}.\frac{1}{{\sqrt 5 }} = \frac{{13}}{{16}}a\)

\( \Leftrightarrow DF = \frac{{\sqrt {13} }}{4}a\)

Câu 3

A. \(\left( { - 1;4} \right)\);                             
B. \(\left( { - 11;4} \right)\);           
C. \(\left( {0;0} \right)\);                                     
D. \(\left( { - 3;4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(M = \frac{{{m^2} + 1}}{2}\);                 
B. \(\frac{{{m^2} - 1}}{2}\);                               
C. \({m^2} - 1\);                               
D. \({m^2} + 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {3;6} \right)\);                                 
B. \(\left( {10;12} \right)\);                      
C. \(\left( {7;\,\,10} \right)\,\,\);                  
D. \(\left( {1;\,\,4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(19,7\);                   
B. \( - 0,05\);               
C. \(0,1\);                         
D. \( - 19,7\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP