Câu hỏi:

22/11/2025 16 Lưu

Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ t của năm không nhuận được cho bởi một hàm số \(y = 4\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] + 10\) với t ℕ và \(0 < t \le 365\). Gọi a là ngày có nhiều giờ có ánh sáng mặt trời nhất và b là ngày có ít giờ có ánh sáng mặt trời nhất trong năm. Tính a + b.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \( - 1 \le \sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] \le 1\)\( \Leftrightarrow - 4 \le 4\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] \le 4\)\( \Leftrightarrow 6 \le 4\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] + 10 \le 14\).

Số giờ có ánh sáng mặt trời nhiều nhất là 14 khi \(\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] = 1\)\( \Leftrightarrow \frac{\pi }{{178}}\left( {t - 60} \right) = \frac{\pi }{2} + k2\pi \)

\( \Leftrightarrow t = 149 + 356k\).

\(0 < t \le 365\) nên ngày có nhiều giờ có ánh sáng mặt trời nhất là ngày 149.

Số giờ có ít ánh sáng mặt trời nhất là 6 khi \(\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] = - 1\)\( \Leftrightarrow \frac{\pi }{{178}}\left( {t - 60} \right) = - \frac{\pi }{2} + k2\pi \)

\( \Leftrightarrow t = - 29 + 356k\).

\(0 < t \le 365\) nên ngày có ít giờ có ánh sáng mặt trời nhất là ngày 327.

Suy ra \(a = 149;b = 327\). Do đó \(a + b = 476\).

Trả lời: 476.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\frac{\pi }{2} < a < \pi \) nên \(\cos a < 0\).

Ta có \({\cos ^2}a = 1 - {\sin ^2}a = 1 - {\left( {\frac{3}{5}} \right)^2} = \frac{{16}}{{25}} \Rightarrow \cos a = - \frac{4}{5}\).

\(\sin \left( {a + \frac{\pi }{4}} \right) = \sin a\cos \frac{\pi }{4} + \cos a\sin \frac{\pi }{4}\)\( = \frac{3}{5}.\frac{{\sqrt 2 }}{2} - \frac{4}{5}.\frac{{\sqrt 2 }}{2} = - \frac{{\sqrt 2 }}{{10}}\).

Câu 2

A. \(A = - 2\sin x\).                                        
B. \(A = - 2\cot x\).                              
C. \(A = 0\).                                                     
D. \(A = - 2\sin x - 2\cot x\).

Lời giải

\(A = \sin \left( {\pi + x} \right) + \cos \left( {\frac{\pi }{2} - x} \right) + \cot \left( {2\pi - x} \right) + \tan \left( {\frac{{3\pi }}{2} - x} \right)\)\( = - \sin x + \sin x - \cot x + \cot x = 0\). Chọn C.

Câu 3

A. \(1\).                        
B. \(\frac{1}{2}\).        
C. \(\sqrt 3 \). 
D. \(0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP