Cho hàm số \(y = \left\{ \begin{array}{l}\frac{2}{{x - 1}}\,\,,\,\,x \in \left( { - \infty ;0} \right)\\\sqrt {x + 1} \,\,,\,\,x \in \left[ {0;2} \right]\\{x^2} - 1\,\,,\,\,x \in \left( {2;5} \right]\end{array} \right.\). Xét tính đúng sai của các mệnh đề sau :
a) Tập xác định của hàm số là \(\mathbb{R}\)
b) Điểm \(A\left( {0;\,2} \right)\) thuộc đồ thị hàm số
c) Giá trị \(f\left( 4 \right) = 15\)
d) Giá trị \(f\left( 0 \right) + f\left( { - 1} \right) = 0\)
Cho hàm số \(y = \left\{ \begin{array}{l}\frac{2}{{x - 1}}\,\,,\,\,x \in \left( { - \infty ;0} \right)\\\sqrt {x + 1} \,\,,\,\,x \in \left[ {0;2} \right]\\{x^2} - 1\,\,,\,\,x \in \left( {2;5} \right]\end{array} \right.\). Xét tính đúng sai của các mệnh đề sau :
a) Tập xác định của hàm số là \(\mathbb{R}\)
b) Điểm \(A\left( {0;\,2} \right)\) thuộc đồ thị hàm số
c) Giá trị \(f\left( 4 \right) = 15\)
d) Giá trị \(f\left( 0 \right) + f\left( { - 1} \right) = 0\)
Quảng cáo
Trả lời:
a) Sai: Tập xác định của hàm số là \(\left( { - \infty ;5} \right]\).
b) Sai: Vì khi \[x = 0 \Rightarrow f\left( 0 \right) = \sqrt {0 + 1} = 1\].
c) Đúng: Vì khi \[x = 4 \Rightarrow f\left( 4 \right) = {4^2} - 1 = 15\].
d) Đúng: với \[x = 0\] ta có \[f\left( 0 \right) = \sqrt {0 + 1} = 1\] và với \[x = - 1\] ta có \[f\left( { - 1} \right) = - 1\]
Vậy \[f\left( 0 \right) + f\left( { - 1} \right) = 0\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số phần tử của không gian mẫu: \[n\left( \Omega \right) = A_6^3 = 120\].
Gọi \[A\] là biến cố: "Số chọn được là một số chia hết cho \[5\]".
Số chia hết cho \[5\] được lập từ các chữ số trên có dạng \[\overline {ab5} \].
Chọn \[2\] số \[a,b\] từ các chữ số \[1,2,3,4,6\] là một chỉnh hợp chập \[2\] của \[5\] phần tử.
Số cách chọn là \[n\left( A \right) = A_5^2 = 20\].
Vậy xác suất cần tìm là: \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{20}}{{120}} = \frac{1}{6} \Rightarrow \left\{ \begin{array}{l}a = 1\\b = 6\end{array} \right. \Rightarrow T = 2 + 6 = 8\].
Câu 2
A. \(7!\).
B. \(144\).
C. \(2880\).
D. \(480\).
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
