Câu hỏi:

22/12/2025 3 Lưu

Tung một đồng xu cân đối và đồng chất 3 lần. Xét tính đúng sai của các khẳng định sau:

a) Số phần tử của không gian mẫu là 6

b) Xác suất để 3 lần gieo trúng mặt sấp là \(\frac{1}{8}\)

c) Xác suất để hai lần nhận được mặt sấp là \(\frac{1}{2}\)

d) Xác suất nhận được ít nhất một mặt sấp \(\frac{7}{8}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai: Số phần tử của không gian mẫu là \(N\left( \Omega  \right) = 2.2.2 = 8\)

Cụ thể: SSS, SSN, SNS, NSS, NNS, NSN, SNN, NNN

b) Đúng: A:” 3 lần gieo trúng mặt sấp “. Khi đó, \(A = \left\{ {SSS} \right\}\) nên \(n\left( A \right) = 1,\,\,P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{1}{8}\)

c) Sai: B:” 2 lần gieo trúng mặt sấp “.

Khi đó, \(A = \left\{ {SSN,\,SNS,\,NSS} \right\}\)\(n\left( B \right) = 3,\,\,P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{3}{8}\)

d) Đúng: C:” gieo được ít nhất một mặt sấp “.

\(\overline C :\)” 3 lần nhận được mặt ngửa” nên \(P\left( C \right) = 1 - P\left( {\overline C } \right) = 1 - \frac{1}{8} = \frac{7}{8}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì đồ thị hàm số cắt trục tung tại điểm có tung độ là \(6\) nên \(c = 6.\)

Mặt khác hàm số đạt giá trị nhỏ nhất là \(4\) tại \(x = 2\) nên đồ thị hàm số có đỉnh \(I\left( {2\,;\,4} \right)\). Do đó ta có: \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\4a + 2b + c = 4\\c = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b =  - 4a\\4a + 2b =  - 2\\c = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b =  - 2\\c = 6\end{array} \right.\) (nhận). Vậy \(2a + b - 3c =  - 19.\)

Câu 2

A. \(7!\).                          

B. \(144\).                     

C. \(2880\).                  

D. \(480\).

Lời giải

Số cách xếp \(3\) học sinh nam và \(4\) học sinh nữ theo hàng ngang là \(7!\).

Câu 3

A. \[\overrightarrow a  = \left( {1;2} \right)\].   
B. \[\overrightarrow a  = \left( { - 1;3} \right)\].                                        
C. \[\overrightarrow a  = \left( {2; - 4} \right)\].         
D. \[\overrightarrow a  = \left( { - 1;2} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\left[ \begin{array}{l}m > 7\\m <  - 1\,\end{array} \right.\].           
B. \[\left[ \begin{array}{l}m \ge 7\\m \le  - 1\,\end{array} \right.\].                       
C. \[ - 1 \le m \le 7\].   
D. \[ - 1 < m < 7\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\left\{ {1 - \sqrt 3 ;1 + \sqrt 3 } \right\}\].    
B. \[\left\{ {1 - \sqrt 3 } \right\}\].        
C. \[\left\{ {1 + \sqrt 3 } \right\}\]        
D. \[\emptyset \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[{\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = \sqrt {52} \].

B. \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = 52\).

C. \[{x^2} + {y^2} + 4x - 6y - 57 = 0\].               
D. \[{x^2} + {y^2} + 4x + 6y - 39 = 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({F_1} = \left( { - \sqrt {13} ;0} \right);{F_2} = \left( {\sqrt {13} ;0} \right)\).       

B. \({F_1} = \left( {0; - \sqrt {13} } \right);{F_2} = \left( {0;\sqrt {13} } \right)\).

C. \({F_1} = \left( {0; - \sqrt 5 } \right);{F_2} = \left( {0;\sqrt 5 } \right)\).      
D. \({F_1} = \left( { - \sqrt 5 ;0} \right);{F_2} = \left( {\sqrt 5 ;0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP