Số nghiệm của phương trình \({x^2} - 2x - 8 = 4\sqrt {\left( {4 - x} \right)\left( {x + 2} \right)} \) là
Quảng cáo
Trả lời:
Điều kiện: \(\left( {4 - x} \right)\left( {x + 2} \right) \ge 0 \Leftrightarrow x \in \left[ { - 2;\,4} \right]\).
\({x^2} - 2x - 8 = 4\sqrt {\left( {4 - x} \right)\left( {x + 2} \right)} \)\( \Leftrightarrow {x^2} - 2x - 8 = 4\sqrt { - \left( {{x^2} - 2x - 8} \right)} \left( 1 \right)\).
Đặt \(t = \sqrt { - \left( {{x^2} - 2x - 8} \right)} \), \(t \ge 0\) \( \Leftrightarrow {t^2} = - \left( {{x^2} - 2x - 8} \right)\)\( \Leftrightarrow {x^2} - 2x - 8 = - {t^2}\).
\(\left( 1 \right) \Leftrightarrow - {t^2} = 4t\)\( \Leftrightarrow {t^2} + 4t = 0\)\( \Leftrightarrow \left[ \begin{array}{l}t = 0\left( n \right)\\t = - 4\left( l \right)\end{array} \right.\)\( \Leftrightarrow \sqrt { - \left( {{x^2} - 2x - 8} \right)} = 0\)\( \Leftrightarrow - \left( {{x^2} - 2x - 8} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = - 2\left( n \right)\\x = 4\left( n \right)\end{array} \right.\). Vậy phương trình đã cho có hai nghiệm.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(7!\).
B. \(144\).
C. \(2880\).
D. \(480\).
Lời giải
Lời giải
Vì đồ thị hàm số cắt trục tung tại điểm có tung độ là \(6\) nên \(c = 6.\)
Mặt khác hàm số đạt giá trị nhỏ nhất là \(4\) tại \(x = 2\) nên đồ thị hàm số có đỉnh \(I\left( {2\,;\,4} \right)\). Do đó ta có: \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\4a + 2b + c = 4\\c = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\4a + 2b = - 2\\c = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b = - 2\\c = 6\end{array} \right.\) (nhận). Vậy \(2a + b - 3c = - 19.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[{\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = \sqrt {52} \].
B. \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = 52\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \({F_1} = \left( { - \sqrt {13} ;0} \right);{F_2} = \left( {\sqrt {13} ;0} \right)\).
B. \({F_1} = \left( {0; - \sqrt {13} } \right);{F_2} = \left( {0;\sqrt {13} } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.