Câu hỏi:

22/12/2025 2 Lưu

Thầy giáo chủ nhiệm có 15 quyển sách gồm 4 quyển sách Toán, 5 quyển sách Lý và 6 quyển sách Hóa. Các quyển sách đôi một khác nhau. Vào dịp cuối năm học thầy giáo chọn ngẫu nhiên 8 quyển sách để làm phần thưởng cho một em học sinh của lớp có hoàn cảnh khó khăn nhưng luôn cố gắng vươn lên trong học tập. Xác suất để số quyển sách còn lại của thầy giáo có đủ 3 môn Toán, Lý và Hóa là \(\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản và \(a,b \in \mathbb{Z}\). Tính giá trị biểu thức \(T = a + b\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số phần tử của không gian mẫu: \(n\left( \Omega  \right) = C_{15}^8\)

Gọi A là biến cố: “ Số quyển sách còn lại của thầy giáo có đủ 3 môn”.

\(\overline A \) là biến cố: “Số quyển sách còn lại của thầy giáo không đủ 3 môn”.

Xét các khả năng xảy ra:

TH1: Số sách còn lại gồm 2 môn Lý, Hóa (tặng hết sách Toán). Số cách chọn là \(C_{11}^4\)

TH2: Số sách còn lại gồm 2 môn Toán, Hóa (tặng hết sách Lý). Số cách chọn là \(C_{10}^3\)

TH3: Số sách còn lại gồm 2 môn Toán, Lý (tặng hết sách Hóa): Số cách chọn là \(C_9^2\)

Xác suất để số quyển sách còn lại của thầy giáo có đủ 3 môn Toán, Lý và Hóa là:

\[P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{C_{11}^4 + C_{10}^3 + C_9^2}}{{C_{15}^8}} = \frac{{661}}{{715}} \Rightarrow \left\{ \begin{array}{l}a = 661\\b = 715\end{array} \right. \Rightarrow T = 661 + 715 = 1376\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì đồ thị hàm số cắt trục tung tại điểm có tung độ là \(6\) nên \(c = 6.\)

Mặt khác hàm số đạt giá trị nhỏ nhất là \(4\) tại \(x = 2\) nên đồ thị hàm số có đỉnh \(I\left( {2\,;\,4} \right)\). Do đó ta có: \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\4a + 2b + c = 4\\c = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b =  - 4a\\4a + 2b =  - 2\\c = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b =  - 2\\c = 6\end{array} \right.\) (nhận). Vậy \(2a + b - 3c =  - 19.\)

Câu 2

A. \(7!\).                          

B. \(144\).                     

C. \(2880\).                  

D. \(480\).

Lời giải

Số cách xếp \(3\) học sinh nam và \(4\) học sinh nữ theo hàng ngang là \(7!\).

Câu 3

A. \[\overrightarrow a  = \left( {1;2} \right)\].   
B. \[\overrightarrow a  = \left( { - 1;3} \right)\].                                        
C. \[\overrightarrow a  = \left( {2; - 4} \right)\].         
D. \[\overrightarrow a  = \left( { - 1;2} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(f\left( x \right) = 2x - 1\).                                                                  

B. \(f\left( x \right) = {x^4} + 7x - 2024\).

C. \(f\left( x \right) = 3{x^2} + 2x - 10\).                                                  
D. \(f\left( x \right) = \sqrt {{x^2} - 4x + 3} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\left[ \begin{array}{l}m > 7\\m <  - 1\,\end{array} \right.\].           
B. \[\left[ \begin{array}{l}m \ge 7\\m \le  - 1\,\end{array} \right.\].                       
C. \[ - 1 \le m \le 7\].   
D. \[ - 1 < m < 7\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\left\{ {1 - \sqrt 3 ;1 + \sqrt 3 } \right\}\].    
B. \[\left\{ {1 - \sqrt 3 } \right\}\].        
C. \[\left\{ {1 + \sqrt 3 } \right\}\]        
D. \[\emptyset \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[{\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = \sqrt {52} \].

B. \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = 52\).

C. \[{x^2} + {y^2} + 4x - 6y - 57 = 0\].               
D. \[{x^2} + {y^2} + 4x + 6y - 39 = 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP