Một tổ học sinh gồm có 5 học sinh nữ và 7 học sinh nam, chọn ngẫu nhiên 2 học sinh. Tính xác suất để 2 học sinh được chọn có cả học sinh nam và học sinh nữ?
Quảng cáo
Trả lời:
Đáp án đúng là C
Tổng số học sinh là: \(5 + 7 = 12\)
Gọi \(A\) là biến cố trong hai học sinh được chọn, có cả học sinh nam và học sinh nữ. Ta có:
\(n\left( \Omega \right) = C_{12}^2\)
\(n\left( A \right) = C_5^1.C_7^1\)
Vậy xác suất của biến cố \(A\) là: \(P\left( A \right) = \frac{{C_5^1.C_7^1}}{{C_{12}^2}} = \frac{{35}}{{66}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Yêu cầu bài toán \( \Leftrightarrow - 0,02{x^2} + 0,4x \ge 1,5\)\( \Leftrightarrow 5 \le x \le 15\).
Vậy quả bóng đạt độ cao lớn hơn hay bằng \(1,5\) mét trong khoảng \(15 - 5 = 10\) ( giây).
Lời giải
Ta có \[\sqrt {{x^2} - 3x + 2} = \sqrt {x + 2} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ge - 2}\\{{x^2} - 3x + 2 = x + 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ge - 2}\\{{x^2} - 4x = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ge - 2}\\{\left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 4}\end{array}} \right.}\end{array}} \right.\].
Vậy tập nghiệm của phương trình \(S = \left\{ {0;4} \right\}\) nên tổng các nghiệm bằng \(4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
