Câu hỏi:

22/12/2025 40 Lưu

Một hộp có 12 viên bi, trong đó có 7 viên bi xanh và 5 viên bi đỏ. Chọn ngẫu nhiên 5 viên bi trong hộp. Hãy xác định định đúng – sai của các khẳng định sau:

a) Số phần tử của không gian mẫu là 792.

b) Xác suất của biến cố \[A\]: “ 5 viên bi đều là mầu xanh” là \[\frac{7}{{264}}\].

c) Xác suất của biến cố \[B\]: “ Trong \[5\] viên bi lấy được có 3 bi xanh và 2 bi đỏ” là \[\frac{{125}}{{462}}\]

d) Xác suất của biến cố \[C\]: “ Trong 5 viên bi lấy được có ít nhất 3 bi đỏ” là \[\frac{{125}}{{396}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng: Không gian mẫu là tập tất cả các tập con gồm 5 viên bi từ 12 viên bi. Vậy số phần tử của không gian mẫu là \[n\left( \Omega  \right) = C_{12}^5 = 792\].

b) Đúng: Chọn 5 bi xanh từ 7 bi xanh, có \[C_7^3 = 21\] (cách chọn) \[ \Rightarrow n\left( A \right) = 21\].

Vậy xác suất của biến cố \[A\] là \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{21}}{{792}} = \frac{7}{{264}}\].

c) Sai: Mỗi phần tử của \[B\] được hình thành từ 2 bước:

Bước 1: Chọn 3 viên bi xanh từ 7 viên bi xanh, có \[C_7^3 = 35\] (cách chọn).

Bước 2: Chọn 2 viên bi đỏ từ 5 viên bi đỏ, có \[C_5^2 = 10\] (cách chọn).

Theo quy tắc nhân, tập \[B\] có \[35.10 = 350\] (phần tử). Vậy \[n\left( B \right) = 350 \Rightarrow P\left( B \right) = \frac{{350}}{{792}} = \frac{{175}}{{396}}\].

d) Đúng: Trong 5 viên bi lấy được có ít nhất 3 bi đỏ, có 3 cách:

Cách 1: Trong \[5\] viên bi được chọn có 2 bi xanh và 3 bi đỏ: có \[\mathop C\nolimits_7^2 .\mathop C\nolimits_5^3  = 210\] (cách chọn)

Cách 2: Trong \[5\] viên bi được chọn có 1 bi xanh và 4 bi đỏ: có \[C_7^1.C_5^4 = 35\] (cách chọn).

Cách 3: Trong \[5\] viên bi được chọn có 0 bi xanh và 5 bi đỏ: có \[C_7^0.C_5^5 = 5\] (cách chọn).

Theo quy tắc cộng, tập \[C\] có \[210 + 35 + 5 = 250\] (phần tử).

Vậy \[n\left( C \right) = 250 \Rightarrow P\left( C \right) = \frac{{250}}{{792}} = \frac{{125}}{{396}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Yêu cầu bài toán \( \Leftrightarrow  - 0,02{x^2} + 0,4x \ge 1,5\)\( \Leftrightarrow 5 \le x \le 15\).

Vậy quả bóng đạt độ cao lớn hơn hay bằng \(1,5\) mét trong khoảng \(15 - 5 = 10\) ( giây).

Lời giải

Với \(n\) sản phẩm thì tổng chi phí sản xuất là \(T = {n^2} + 70n + 3000\) (nghìn đồng) và doanh thu là \(200n\) (nghìn đồng).

Suy ra lợi nhuận là \(L = 200n - \left( {{n^2} + 70n + 3000} \right) =  - {n^2} + 130n - 3000\) (nghìn đồng)

Để không bị lỗ thì \(L \ge 0 \Leftrightarrow  - {n^2} + 130n - 3000 \ge 0 \Leftrightarrow 30 \le n \le 100\).

a) Đúng: Số sản phẩm được sản xuất phải lớn hơn \(100\) thì sẽ bị lỗ.

b) Sai: Số sản phẩm được sản xuất phải lớn hơn \(30\) thì sẽ không bị lỗ.

c) Sai: Số sản phẩm được sản xuất phải trong đoạn \(\left[ {30;100} \right]\) thì sẽ không bị lỗ.

d) Đúng: Số sản phẩm được sản xuất phải trong đoạn \(\left[ {30;100} \right]\) thì sẽ không bị lỗ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{1}{3}\).            
B. \(\frac{1}{6}\).          
C. \(\frac{{35}}{{66}}\).           
D. \(\frac{3}{{55}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(10\).                          
B. \(8\).                          
C. \(16\).                       
D. \(20\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left\{ {1; - 6} \right\}\).                                 
B. \(\left\{ 1 \right\}\).  
C. \(\emptyset \).        
D. \(\mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP