Với giá trị nào của \[m\] thì hai đường thẳng \[{d_1}:3x + 4y - 7 = 0\] và \[{d_2}:\left( {2m - 1} \right)x + {m^2}y - 2 = 0\] cắt nhau tại điểm \(\left( {1;1} \right)\)?
Với giá trị nào của \[m\] thì hai đường thẳng \[{d_1}:3x + 4y - 7 = 0\] và \[{d_2}:\left( {2m - 1} \right)x + {m^2}y - 2 = 0\] cắt nhau tại điểm \(\left( {1;1} \right)\)?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Để \({d_1}\) và \({d_2}\) cắt nhau thì \(\frac{{2m - 1}}{3} \ne \frac{{{m^2}}}{4} \Leftrightarrow 3{m^2} - 8m + 4 \ne 0 \Leftrightarrow \left\{ \begin{array}{l}m \ne 2\\m \ne \frac{2}{3}\end{array} \right.\).
Với điểm \(\left( {1;1} \right)\), có \[3.1 + 4.1 - 7 = 0\] nên điểm này thuộc đường thẳng \({d_1}\).
Do đó để \({d_1}\) và \({d_2}\) cắt nhau tại \(\left( {1;1} \right)\) thì điểm này cũng thuộc \({d_2}\) nên ta có \[\left( {2m - 1} \right).1 + {m^2}.1 - 2 = 0 \Leftrightarrow {m^2} + 2m - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = - 3\end{array} \right.\].
Vậy với \(m = 1\) và \(m = - 3\) thì hai đường thẳng \({d_1}\) và \({d_2}\) cắt nhau tại \(\left( {1;1} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Vì hai học sinh ngồi đối diện nhau thì khác lớp nên mỗi cặp ghế đối diện nhau sẽ được xếp bởi một học sinh lớp A và một học sinh lớp B.
Số cách xếp \[5\] học sinh lớp A vào \[5\] cặp ghế là \[5!\] cách. Số cách xếp \[5\] học sinh lớp B vào \[5\] cặp ghế là \[5!\] cách. Số cách xếp chỗ ở mỗi cặp ghế là 2 cách.
Theo quy tắc nhân thì có \[{\left( {5!} \right)^2}{.2^5} = 460\,\,800\] cách.
Lời giải
Hướng dẫn giải
Gọi số tạo thành có dạng \[x = \overline {abc} \] với \[a,\,b,\,c\] đôi một khác nhau và lấy từ \[A\].
Chọn một vị trí \[a,\,b\] hoặc \[c\] cho số \[3\] có \[3\] cách chọn.
Chọn hai chữ số khác \[3\] từ \[A\] và sắp xếp vào hai vị trí còn lại của \[x\] có \[A_4^2\] cách chọn.
Theo quy tắc nhân có: \[3.A_4^2 = 36\] cách chọn.
Mỗi cách sắp xếp như trên cho ta một số thỏa mãn yêu cầu bài toán.
Vậy có \[36\] số cần tìm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.