Cho điểm \[M\left( {5;\,8} \right)\] nằm trên parabol \[\left( P \right):{y^2} = \frac{{64}}{5}x\]. Tính độ dài \[FM\] biết \[F\] là tiêu điểm của parabol đó?
Cho điểm \[M\left( {5;\,8} \right)\] nằm trên parabol \[\left( P \right):{y^2} = \frac{{64}}{5}x\]. Tính độ dài \[FM\] biết \[F\] là tiêu điểm của parabol đó?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Ta có \[2p = \frac{{64}}{5} \Leftrightarrow p = \frac{{32}}{5} \Rightarrow \frac{p}{2} = \frac{{16}}{5}\]
Khi đó ta có tiêu điểm \[F\left( {\frac{{16}}{5};\,0} \right)\].
Với \[F\left( {\frac{{16}}{5};\,0} \right)\] và \[M\left( {5;\,8} \right)\], ta có \[\overrightarrow {FM} = \left( {\frac{9}{5};\,8} \right) \Rightarrow FM = \sqrt {{{\left( {\frac{9}{5}} \right)}^2} + {8^2}} = \frac{{41}}{5}\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi số tạo thành có dạng \[x = \overline {abc} \] với \[a,\,b,\,c\] đôi một khác nhau và lấy từ \[A\].
Chọn một vị trí \[a,\,b\] hoặc \[c\] cho số \[3\] có \[3\] cách chọn.
Chọn hai chữ số khác \[3\] từ \[A\] và sắp xếp vào hai vị trí còn lại của \[x\] có \[A_4^2\] cách chọn.
Theo quy tắc nhân có: \[3.A_4^2 = 36\] cách chọn.
Mỗi cách sắp xếp như trên cho ta một số thỏa mãn yêu cầu bài toán.
Vậy có \[36\] số cần tìm.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Gọi \(A\) là biến cố để An và Bình chung nhóm.
Ta có: \(n\left( \Omega \right) = C_{15}^5.C_{10}^5.C_5^5\).
Nếu An và Bình ở chung nhóm thứ nhất thì có: \(C_{13}^3.C_{10}^5.C_5^5\) cách.
Nếu An và Bình ở chung nhóm thứ hai thì có: \(C_{13}^3.C_{10}^5.C_5^5\) cách.
Nếu An và Bình ở chung nhóm thứ ba thì có: \(C_{13}^3.C_{10}^5.C_5^5\) cách.
\( \Rightarrow n\left( A \right) = 3.C_{13}^3.C_{10}^5.C_5^5\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{3.C_{13}^3.C_{10}^5.C_5^5}}{{C_{15}^5.C_{10}^5.C_5^5}} = \frac{2}{7}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.