Câu hỏi:

08/01/2026 37 Lưu

Số hạng chứa \[{x^2}\] trong khai triển \[{\left( {\frac{1}{x} + {x^3}} \right)^{n + 1}}\] với \[x \ne 0\], biết \[n\] là số nguyên dương thỏa mãn \[3C_{n + 1}^2 + n{P_2} = 4A_n^2\].

A. \[4{x^2}\]; 
B. \[4\];  
C. \[6{x^2}\];
D. \[4.\frac{1}{{{x^2}}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Từ phương trình:

\[3C_{n + 1}^2 + n{P_2} = 4A_n^2\]

\[ \Leftrightarrow 3.\frac{{\left( {n + 1} \right)!}}{{2\left( {n - 1} \right)!}} + 2n = 4.\frac{{n!}}{{\left( {n - 2} \right)!}}\]

\[ \Leftrightarrow 3.\frac{{\left( {n + 1} \right).n.\left( {n - 1} \right)!}}{{\left( {n - 1} \right)!}} + 4n = 8.\frac{{n.\left( {n - 1} \right).\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!}}\]

\[ \Leftrightarrow 3n.\left( {n + 1} \right) + 4n = 8n.\left( {n - 1} \right)\]

\[ \Leftrightarrow 5{n^2} - 15n = 0\]

\[ \Leftrightarrow \left[ \begin{array}{l}n = 0\\n = 3\left( {tmdk} \right)\end{array} \right.\]

Với \[n = 3\], ta có:

 \[{\left( {\frac{1}{x} + {x^3}} \right)^{n + 1}} = {\left( {\frac{1}{x} + {x^3}} \right)^4}\]

\[ = {\left( {\frac{1}{x}} \right)^4} + 4x{\left( {\frac{1}{x}} \right)^3} + 6{x^2}{\left( {\frac{1}{x}} \right)^2} + 4{x^3}\left( {\frac{1}{x}} \right) + {x^4}\]

\[ = \frac{1}{{{x^4}}} + 4.\frac{1}{{{x^2}}} + 6 + 4{x^2} + {x^4}\].

Vậy số hạng chứa \[{x^2}\] là: \[4{x^2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi số tạo thành có dạng \[x = \overline {abc} \] với \[a,\,b,\,c\] đôi một khác nhau và lấy từ \[A\].

Chọn một vị trí \[a,\,b\] hoặc \[c\] cho số \[3\] có \[3\] cách chọn.

Chọn hai chữ số khác \[3\] từ \[A\] và sắp xếp vào hai vị trí còn lại của \[x\] có \[A_4^2\] cách chọn.

Theo quy tắc nhân có: \[3.A_4^2 = 36\] cách chọn.

Mỗi cách sắp xếp như trên cho ta một số thỏa mãn yêu cầu bài toán.

Vậy có \[36\] số cần tìm.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Gọi \(A\) là biến cố để An và Bình chung nhóm.

Ta có: \(n\left( \Omega  \right) = C_{15}^5.C_{10}^5.C_5^5\).

Nếu An và Bình ở chung nhóm thứ nhất thì có: \(C_{13}^3.C_{10}^5.C_5^5\) cách.

Nếu An và Bình ở chung nhóm thứ hai thì có: \(C_{13}^3.C_{10}^5.C_5^5\) cách.

Nếu An và Bình ở chung nhóm thứ ba thì có: \(C_{13}^3.C_{10}^5.C_5^5\) cách.

\( \Rightarrow n\left( A \right) = 3.C_{13}^3.C_{10}^5.C_5^5\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{3.C_{13}^3.C_{10}^5.C_5^5}}{{C_{15}^5.C_{10}^5.C_5^5}} = \frac{2}{7}\).

Câu 5

A. \[\frac{1}{2}\];         
B. \[\frac{9}{{16}}\];    
C. \[\frac{1}{{16}}\];    
D. \[\frac{{81}}{{16}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP