Câu hỏi:

08/01/2026 8 Lưu

Cho các số \(2;\,\,3;\,\,5;\,\,7;\,\,8;\,\,9\). Tập \(M\) là tập hợp các số tự nhiên có ba chữ số khác nhau được lấy từ các số đã cho. Chọn ngẫu nhiên một số trong tập \(M\). Gọi \(A\) là biến cố: “Số được chọn nhỏ hơn \(432\)”. Biến cố đối của biến cố \[A\] là

A. \(\overline A :\)”Số được chọn lớn hơn \(432\)”;
B. \(\overline A :\)”Số được chọn khác \(432\)”;
C. \(\overline A :\)”Số được chọn lớn hơn hoặc bằng \(432\)”;
D. \(\overline A :\)”Số được chọn lớn hơn hoặc bằng \(432\)”.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Biến cố đối của biến cố \[A\] là \(\overline A :\)”Số được chọn lớn hơn hoặc bằng \(432\)”.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Vì hai học sinh ngồi đối diện nhau thì khác lớp nên mỗi cặp ghế đối diện nhau sẽ được xếp bởi một học sinh lớp A và một học sinh lớp B.

Số cách xếp \[5\] học sinh lớp A vào \[5\] cặp ghế là \[5!\] cách. Số cách xếp \[5\] học sinh lớp B vào \[5\] cặp ghế là \[5!\] cách. Số cách xếp chỗ ở mỗi cặp ghế là 2 cách.

Theo quy tắc nhân thì có \[{\left( {5!} \right)^2}{.2^5} = 460\,\,800\] cách.

Lời giải

Hướng dẫn giải

Gọi số tạo thành có dạng \[x = \overline {abc} \] với \[a,\,b,\,c\] đôi một khác nhau và lấy từ \[A\].

Chọn một vị trí \[a,\,b\] hoặc \[c\] cho số \[3\] có \[3\] cách chọn.

Chọn hai chữ số khác \[3\] từ \[A\] và sắp xếp vào hai vị trí còn lại của \[x\] có \[A_4^2\] cách chọn.

Theo quy tắc nhân có: \[3.A_4^2 = 36\] cách chọn.

Mỗi cách sắp xếp như trên cho ta một số thỏa mãn yêu cầu bài toán.

Vậy có \[36\] số cần tìm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\frac{1}{2}\];         
B. \[\frac{9}{{16}}\];    
C. \[\frac{1}{{16}}\];    
D. \[\frac{{81}}{{16}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[1\];   
B. \[5\];  
C. \[10\]; 
D. \[2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP