Câu hỏi:

08/01/2026 18 Lưu

Gieo hai con xúc xắc cân đối. Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 4 là

A. \(\frac{1}{7}\);      
B. \(\frac{1}{6}\);     
C. \(\frac{1}{8}\); 
D. \(\frac{2}{9}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Không gian mẫu của biến cố là: \(n\left( \Omega  \right) = 6.6 = 36\).

Gọi \(A\): “Tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 4”.

Các kết quả thuận lợi cho biến cố \(A\) là: \(A = \left\{ {\left( {1;1} \right);\,\,\left( {1;2} \right);\,\left( {2;1} \right);\,\,\,\left( {1;3} \right);\,\,\left( {3;1} \right);\,\,\left( {2;2} \right)} \right\}\).

\( \Rightarrow n\left( A \right) = 6\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{6}{{36}} = \frac{1}{6}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi số tạo thành có dạng \[x = \overline {abc} \] với \[a,\,b,\,c\] đôi một khác nhau và lấy từ \[A\].

Chọn một vị trí \[a,\,b\] hoặc \[c\] cho số \[3\] có \[3\] cách chọn.

Chọn hai chữ số khác \[3\] từ \[A\] và sắp xếp vào hai vị trí còn lại của \[x\] có \[A_4^2\] cách chọn.

Theo quy tắc nhân có: \[3.A_4^2 = 36\] cách chọn.

Mỗi cách sắp xếp như trên cho ta một số thỏa mãn yêu cầu bài toán.

Vậy có \[36\] số cần tìm.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Thứ tự đúng để xét dấu của tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\) là:

4. Tính và xác định dấu của biệt thức \(\Delta \);

1. Xác định nghiệm của \(f\left( x \right)\) nếu có;

3. Xác định dấu của \(a\);

2. Xác định dấu của \(f\left( x \right)\).

Câu 3

A. \[\frac{1}{2}\];         
B. \[\frac{9}{{16}}\];    
C. \[\frac{1}{{16}}\];    
D. \[\frac{{81}}{{16}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP