Giải hệ phương trình sau:
\[\left\{ {\begin{array}{*{20}{l}}{{x^3} - 2y + x - 2{x^2}y = 0}\\{\sqrt {x + 1} - \sqrt {16 - y} = 3}\end{array}} \right.\]
Giải hệ phương trình sau:
\[\left\{ {\begin{array}{*{20}{l}}{{x^3} - 2y + x - 2{x^2}y = 0}\\{\sqrt {x + 1} - \sqrt {16 - y} = 3}\end{array}} \right.\]
Quảng cáo
Trả lời:
Điều kiện: \(x \ge - 1\) và \(y \le 16\). (1)
Với điều kiện đó, ta có:
\(\left\{ {\begin{array}{*{20}{l}}{{x^3} - 2y + x - 2{x^2}y = 0}\\{\sqrt {x + 1} - \sqrt {16 - y} = 3}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{(x - 2y)\left( {{x^2} + 1} \right) = 0}\\{\sqrt {x + 1} - \sqrt {16 - y} = 3}\end{array}} \right.} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2y}\\{\sqrt {2y + 1} - \sqrt {16 - y} = 3.}\end{array}} \right.\)
Ta có:
\(\begin{array}{l}{\rm{ (3) }} \Leftrightarrow (\sqrt {2y + 1} - 5) - (\sqrt {16 - y} - 2) = 0\\ \Leftrightarrow \frac{{2(y - 12)}}{{\sqrt {2y + 1} + 5}} + \frac{{y - 12}}{{\sqrt {16 - y} + 2}} = 0\\ \Leftrightarrow (y - 12)\left( {\frac{2}{{\sqrt {2y + 1} + 5}} + \frac{1}{{\sqrt {16 - y} + 2}}} \right) = 0\\ \Leftrightarrow y = 12.\end{array}\)
Thay \(y = 12\) vào (2), ta được \(x = 24\).
Cặp số \(\left( {x,y} \right) = \left( {24,12} \right)\) thỏa mãn (1). Vì thế, cặp số đó là nghiệm duy nhất của hệ phương trình đã cho.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Rút gọn biểu thức
Ta có:
\(\begin{array}{l}A = \frac{{x(\sqrt x - 2) + 2(\sqrt x - 1) + (2x - x\sqrt x - 2)}}{{(\sqrt x - 1)(\sqrt x - 2)}}\\ = \frac{{x\sqrt x - 2x + 2\sqrt x - 2 + 2x - x\sqrt x - 2}}{{(\sqrt x - 1)(\sqrt x - 2)}}\\ = \frac{{2\sqrt x - 4}}{{(\sqrt x - 1)(\sqrt x - 2)}} = \frac{{2(\sqrt x - 2)}}{{(\sqrt x - 1)(\sqrt x - 2)}} = \frac{2}{{\sqrt x - 1}}\end{array}\)
b)
Ta có \(x = 3 + 2\sqrt 2 = {(\sqrt 2 + 1)^2}\)
Do đó: \(A = \frac{2}{{\sqrt {{{(\sqrt 2 + 1)}^2}} - 1}} = \frac{2}{{\sqrt 2 + 1 - 1}} = \sqrt 2 \).
Lời giải
Xét hai tam giác vuông \(ABM\) và \(ADN\), ta có:
\(AB = AD\),\(\widehat {BAM} = \widehat {DAN}\) (hai góc nhọn có cạnh tương ứng vuông góc)
Do đó tam giác \(\Delta ABM = \Delta ADN\) (cạnh góc vuông – góc nhọn). Suy ra, \(DN = BM\) (1).
Qua \(M\) kẻ đường thẳng song song \(ID\) cắt \(NC\) tại \[E\].
Xét tam giác \(MNE\):
Do \(I\) là trung điểm của \(MN\) và \(ID\,{\rm{//}}\,ME\), nên \(D\) là trung điểm của \(NE\). Vì thế \(DE = DN = BM\) (theo (1)). Suy ra, \(MC = CE\) (2)
Do \(I,D\) tương ứng là trung điểm của \(MN,\,NE\), nên \(ID\) là đường trung bình của tam giác. Do đó, \(DI = \frac{1}{2}EM\).
Xét tam giác vuông (tại C) MCE, theo định lí Pitago, ta có:
\(EM = \sqrt {M{C^2} + C{E^2}} = \sqrt {2M{C^2}} \)(do (2))
\( = \sqrt 2 MC = \sqrt 2 \left( {BC - BM} \right) = \sqrt 2 \left( {8 - 5} \right) = 3\sqrt 2 \).
Vì thế \(DI = \frac{{3\sqrt 2 }}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.