Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Oy?
Quảng cáo
Trả lời:
Trục \(Oy\) nhận \(\overrightarrow u = \left( {0;1} \right)\) làm vectơ chỉ phương nên đường thẳng song song với trục \(Oy\) cũng nhận \(\overrightarrow u = \left( {0;1} \right)\)làm vectơ chỉ phương. Chọn D.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(AH\) là đường cao của tam giác \(ABC\).
Ta có \(AH \bot BC\).
Ta có \(\overrightarrow {{n_{BC}}} = \left( {1;1} \right)\) là một vectơ pháp tuyến của đường thẳng \(BC\).
Suy ra \(\overrightarrow {{u_{BC}}} = \left( { - 1;1} \right)\) là một vectơ chỉ phương của \(BC\).
Lại có \(AH \bot BC\) nên \(AH\) nhận \(\overrightarrow {{u_{BC}}} = \left( { - 1;1} \right)\) làm vectơ pháp tuyến.
Khi đó đường thẳng \(AH\) có phương trình là \( - \left( {x + 1} \right) + \left( {y + 2} \right) = 0 \Leftrightarrow - x + y + 1 = 0\).
Tọa độ điểm \(H\) là nghiệm của hệ \(\left\{ \begin{array}{l}x + y + 4 = 0\\ - x + y + 1 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{3}{2}\\y = - \frac{5}{2}\end{array} \right.\)\( \Rightarrow H\left( {\frac{{ - 3}}{2};\frac{{ - 5}}{2}} \right)\).
Gọi \(I\) là trung điểm của \(AH\) nên \(I\left( { - \frac{5}{4}; - \frac{9}{4}} \right)\).
Đường trung bình D ứng với cạnh đáy \(BC\) có dạng \(x + y + c = 0\).
Lại có \(\Delta \) đi qua \(I\) nên \( - \frac{5}{4} - \frac{9}{4} + c = 0 \Rightarrow c = \frac{7}{2}\).
Vậy \(\Delta :x + y + \frac{7}{2} = 0\) hay \(\Delta :2x + 2y + 7 = 0\)
Suy ra \(a = 2;b = 7\). Do đó \(a + 2b = 16\).Lời giải
Vì \(d//\Delta \) nên \(d:2x - y + c = 0,c \ne 1\).
Vì \(d\) đi qua điểm \(M\left( {1; - 2} \right)\) nên \(2 \cdot 1 - \left( { - 2} \right) + c = 0 \Rightarrow c = - 4\).
Vậy \(d:2x - y - 4 = 0\). Suy ra \(b = - 1;c = - 4\).
Vậy \(T = 2b + c = - 6\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) Đường thẳng \(AB\) có một vectơ chỉ phương là \(\overrightarrow {AB} = \left( { - 2; - 6} \right)\).
b) Phương trình tổng quát của đường thẳng \(BC\) có một vectơ pháp tuyến là \(\overrightarrow n = \left( {4;1} \right)\).
c) Phương trình tham số của đường thẳng đi qua 2 điểm \(A,B\) là \(\left\{ \begin{array}{l}x = 4 - 2t\\y = 3 + 6t\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
