Câu hỏi:

12/07/2024 890 Lưu

Chứng minh các bất đẳng thức sau:

1+12x-x28<1+x<1+12x

với 0 < x < +

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hàm số h(x) trên [0; +)

Giải sách bài tập Toán 12 | Giải sbt Toán 12Giải sách bài tập Toán 12 | Giải sbt Toán 12

Dấu “=” xẩy ra chỉ tại x = 0 nên h(x) đồng biến trên nửa khoảng [0; +).

Vì h(x) = 0 nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hay

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét hàm số trên f(x) trên [0; +);

Giải sách bài tập Toán 12 | Giải sbt Toán 12Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì g(0) = 0 và g(x) đồng biến trên nửa khoảng [0; +) nên g(x) 0, tức là f′(x)  0 trên khoảng đó và vì dấu “=” xảy ra chỉ tại x = 0 nên f(x) đồng biến trên nửa khoảng .

Mặt khác, ta có f(0) = 0 nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với mọi 0 < x < +

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tập xác định: D = R \ {m}

Hàm số đồng biến trên từng khoảng (−; m), (m; +) khi và chỉ khi:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇔ − m2 + 4 > 0

⇔ m2 < 4 ⇔ −2 < m < 2

Lời giải

TXĐ: R \ {-1}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số đã cho đồng biến trên các khoảng (−; −1 − 6), (−1 + 6; +) và nghịch biến trên các khoảng (−1 − 6; −1),(−1; −1 + 6)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP