Câu hỏi:

12/07/2024 6,797

Cho hàm số: Giải sách bài tập Toán 12 | Giải sbt Toán 12

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho

b) Tìm các giá trị của tham số m để phương trình x3 – 6x3 + m = 0 có 3 nghiệm thực phân biệt.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Tập xác định: D = R;

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y′= 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên mỗi khoảng (–; 0), (4; +).

Hàm số nghịch biến trên mỗi khoảng (0; 4).

Hàm số đạt cực đại tại x = 0, yCĐ = 5. Hàm số đạt cực tiểu tại x = 4, yCT = -3.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị đi qua A(-2; -3); B(6;5).

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) x3 – 6x2 + m = 0

⇔ x3 – 6x2 = –m (1)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Số nghiệm thực phân biệt của phương trình (1) bằng số giao điểm phân biệt của đồ thị (C)

và đường thẳng Giải sách bài tập Toán 12 | Giải sbt Toán 12

Suy ra (1) có 3 nghiệm thực phân biệt khi và chỉ khi:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Tịnh tiến (C) song song với trục Ox sang trái 1 đơn vị, ta được đồ thị (C1) của hàm số.

y = f(x) = −(x+1)3 + 3(x + 1) + 1 hay f(x) = −(x+1)3 + 3x + 4 (C1)

Lấy đối xứng (C1) qua trục Ox, ta được đồ thị (C’) của hàm số y = g(x) = (x+1)3 − 3x – 4


c) Ta có: (x+1)3 = 3x + m (1)

⇔ (x+1)3 − 3x – 4 = m – 4

Số nghiệm của phương trình (1) là số giao điểm của hai đường :

y = g(x) = (x+1)3 − 3x – 4 (C’) và y = m – 4 (d1)

Từ đồ thị, ta suy ra:

    +) m > 5 hoặc m < 1: phương trình (1) có một nghiệm.

    +) m = 5 hoặc m = 1 : phương trình (1) có hai nghiệm.

    +) 1 < m < 5 , phương trình (1) có ba nghiệm.

d) Vì (d) vuông góc với đường thẳng:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có hệ số góc bằng 9.

Ta có: g′(x) = 3(x+1)2 – 3

g′(x) = 9 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Có hai tiếp tuyến phải tìm là:

y – 1 = 9(x – 1) ⇔ y = 9x – 8;

y + 3 = 9(x + 3) ⇔ y = 9x + 24.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP