Câu hỏi:

13/07/2024 339 Lưu

Chứng minh rằng: i + i2 + i3 + ... + i99 + i100 = 0

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Biến đổi vế trái bằng cách nhóm từng bốn số hạng và đặt thừa số chung, ta được

i(1 + i + i2 + i3) + ... + i97 (1 + i + i2 + i3)

= (1 + i + i2 + i3)(i + ... + i97) = 0

Vì 1 + i + i2 + i3 = 1 + i – 1 – i = 0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

log4x+2logx2=1

Điều kiện:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy nghiệm của phương trình là x = 2.

Lời giải

Ta có

log308 = log3023

= 3log302

= 3.log3030/15

= 3(log3030 − log303.5)

= 3(1 − log303 − log305) = 3(1 – a – b)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP