Câu hỏi:

12/07/2024 4,903

Với mỗi số nguyên dương n, gọi un  = 9n  - 1. Chứng minh rằng với mọi số nguyên dương n thì un luôn chia hết cho 8.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

* Ta có u1=911=8 chia hết cho 8 (đúng với n = 1).

* Giả sử uk=9k1 chia hết cho 8.

Ta cần chứng minh uk+1=9k+11 chia hết cho 8.

Thật vậy, ta có uk+1=9k+11=9.9k1=99k1+8=9uk+8.

9uk và 8 đều chia hết cho 8, nên uk+1 cũng chia hết cho 8.

Vậy với mọi số nguyên dương n thì un chia hết cho 8.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử un=167842n+1n+2=1678484(2n+1)=167(n+2)

168n+84=  167n  +334n=250

Vậy 16784 là số hạng thứ 250 của dãy số (un).

Chọn đáp án C.

Câu 2

Lời giải

Ta có: 1k2<1k1k=1k11k,k2

Suy ra  un<12+112+1213+1314+1516+...+1n11n=321n<32

0<un<32,n*

Vậy (un) bị chặn

Chọn đáp án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP