Câu hỏi:

13/08/2020 949

Cho ΔABC, hai đường cao AM và BN cắt nhau tại H. Em hãy chọn phát biểu đúng:

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì hai đường cao AM và BN cắt nhau tại H nên CH là đường cao của ΔABC và H là trực tâm tam giác ABC nên A, B, D sai, C đúng.

Chọn đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ΔABC cân tại A, trung tuyến AM. Biết BC=24cm,AM=5cm. Tính độ dài các cạnh AB và AC.

Xem đáp án » 13/08/2020 2,914

Câu 2:

Cho tam giác ABC có góc C^=45°, độ dài đường cao AH bằng 12cm và diện tích bằng 120cm2. Tính độ dài BH.

Xem đáp án » 27/08/2020 2,760

Câu 3:

Đường cao của tam giác đều cạnh a có bình phương độ dài là

Xem đáp án » 13/08/2020 2,687

Câu 4:

Cho ΔABC nhọn, hai đường cao BD và CE. Trên tia đối  của tia BD lấy điểm I sao cho BI = AC. Trên tia đối của tia CE lấy điểm K sao cho CK = AB. ΔAIK là tam giác gì?

Xem đáp án » 13/08/2020 2,124

Câu 5:

Cho tam giác ABC vuông tại A. Lấy H thuộc AB, vẽ HEBC  ở E. Tia EH cắt tia CA tại D. Khi đó

Xem đáp án » 27/08/2020 1,458

Câu 6:

Cho ΔABC nhọn, hai đường cao BD và CE. Trên tia đối  của tia BD lấy điểm I sao cho BI = AC. Trên tia đối của tia CE lấy điểm K sao cho CK = AB. Chọn câu đúng

Xem đáp án » 27/08/2020 1,024

Câu 7:

Cho tam giác ABC vuông ở A có đường cao AD. Lấy H thuộc AD và E thuộc CD sao cho HE//AC. Khi đó

Xem đáp án » 13/08/2020 1,013

Bình luận


Bình luận