Cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm của AB, BC. Gọi E là giao điểm CM và DN
a, Tính số đo góc CEN
b, Chứng minh A, D, E, M cùng thuộc một đường tròn
c, Xác định tâm của đường tròn đi qua ba điểm B, D, E
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    a, Chứng minh ∆CMB = ∆DNC =>
Từ đó chứng minh được
b, Ta có A,D,E,M cùng thuộc được tròn đường kính DM
c, Gọi I là trung điểm của CD, chứng minh AI song song với MC
=> ∆ADE cân tại A
=> B,E,D cùng thuộc (A;AB)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a, Có O là trung điểm của BC
Mà D(O;BC) => OB = OD = OC
=> ∆BDC vuông tại D => CDAB
Tương tự BEAC
b, Xét ∆ABC có K là trực tâm => AKBC
Lời giải
a, Gọi EF là đường kính sao cho EFAB
Xét trường hợp C chạy trên nửa đường tròn EBF
Chứng minh: ∆OMB = ∆OHC (c.g.c)
=>
Vậy M chạy trên đường tròn đường kính OB
Chứng minh tương tự khi C chạy trên nửa đường tròn EAF, ta được M chạy trên đường tròn đường kính OA
b, Chứng minh ∆ADB cân tại A => AD=AB nên D chạy trên (A;AB)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 Nhắn tin Zalo
 Nhắn tin Zalo