Câu hỏi:
12/07/2024 4,586Cho tam giác ABC ngoại tiếp đường tròn (I). Các cạnh AB, BC, CA tiếp xúc đường tròn (I) lần lượt tại D, E, F. Đặt BC = a, CA = b, AB = c
a, Chứng minh AD =
b, Gọi r là bán kính của (I). Chứng minh = p.r, trong đó p là nửa chu vi tam giác ABC
c, Gọi M là giao điểm của đoạn thẳng AI với (I). Tính độ dài đoạn thẳng BM theo a, b, c
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a, Áp dụng tính chất 2 tiếp tuyến tại A,B,C ta chứng minh được = AD
b,
Mà ID = IE = IF = r => = p.r
c, Vì AM là phân giác của =>
Áp dụng tính chất tỉ lệ thức thu được BM =
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn (O; R) đường kính AB. Kẻ tiếp tuyến Ax, lấy P trên Ax (AP > R). Từ P kẻ tiếp tuyến PM với (O)
a, Chứng minh bôn điểm A, P, M, O cùng thuộc một đường tròn
b, Chứng minh BM // OP
c, Đường thẳng vuông góc với AB tại O cắt tia BM tại N. Chứng minh tứ giác OBNP là hình bình hành
d, Giả sử AN cắt OP tại K; PM cắt ON tại I; PN cắt OM tại J. Chứng minh I, J, K thẳng hàng
Câu 2:
Cho nửa đường tròn (O) đường kính AB = 2R. Trên cùng nửa mặt phẳng bờ AB vẽ hai tiếp tuyến Ax, By. M là điểm trên (O) sao cho tiếp tuyên tại M cắt Ax, By tại D và C. Đường thẳng AD cắt BC tại N
a, Chứng minh A, C, M, O cùng thuộc một đường tròn. Chỉ ra bán kính của đường tròn đó
b, Chứng minh OC và BM song song
c, Tìm vị trí điểm M sao cho SACDB nhỏ nhất
d, Chứng minh MN và AB vuông góc nhau
Câu 3:
Cho đường tròn tâm O đường kính AB. Gọi d và d' là các tiếp tuyến tại A và B. Lấy C bất kì thuộc d, đường thẳng vuông góc với OC tại O cắt d' tại D. AD cắt BC tại N.
a, Chứng minh CD là tiếp tuyến của (O) tại tiếp điểm M
b, Tìm vị trí C trên d sao cho (AC + BD) đạt giá trị nhỏ nhất
c, Biết AB = 4a, tính giá trị của AC.BD và theo a
d, Chứng minh MN vuông góc với AB và N là trung điểm của MH với H là giao điểm của MN và AB
Câu 4:
Cho đường tròn (O; R). Từ điểm A trên (O), kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điếm M bất kì (M khác A), kẻ cát tuyến MNP, gọi K là trung điểm NP, kẻ tiếp tuyến MB, kẻ ACMB, BDMA. Gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB. Chứng minh:
a, Bốn điểm A, M, B, O cùng thuộc một đường tròn
b, Năm điểm O, K, A, M, B cùng thuộc một đường tròn
c, OI.OM = và OI.IM =
d, OAHB là hình thoi
e, O, H, M thẳng hàng
Câu 5:
Cho nửa đường tròn (O) đường kính AB. Trên cùng nửa mặt phẳng bờ AB vẽ hai tiếp tuyến Ax, By. Điểm M nằm trên (O) sao cho tiếp tuyến tại M cắt Ax, By tại D và C. Chứng minh:
a, AD + BC = CD
b,
c, AC.BD =
d, AB là tiếp tuyến của đường tròn đường kính CD
Câu 6:
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A; AH). Từ B, C kẻ các tiếp tuyến BD, CE với (A) trong đó D, E là các tiếp điểm
a, Chứng minh ba điểm A, D, E thẳng hàng
b, Chứng minh BD.CE =
c, Gọi M là trung điểm CH. Đường tròn tâm M đường kính CH cắt (Ạ) tại N với N khác H. Chứng minh CN và AM song song
về câu hỏi!