Cho đường tròn (O; R) đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến d và d' với (O). Một đường thẳng qua O cắt d ở M và cắt d' ở P. Từ O vẽ một tia vuông góc với MP và cắt d' ở N
a, Chứng minh OM = OP và tam giác NMP cân
b, Gọi I là hình chiếu vuông góc của O lên MN. Chứng minh OI = R và MN là tiếp tuyến của (O)
c, Chứng minh AM. BN =
d, Tìm vị trí của M để tứ giác AMNB có diện tích đạt giá trị nhỏ nhất
Câu hỏi trong đề: Chương 2 - Ôn tập chương 2 !!
Quảng cáo
Trả lời:
a, ∆MAO = ∆PBO => MO = OP => ∆MNP cân
Vì đường cao NO đồng thời là đường trung tuyến
b,
= => OI = R
=> MN là tiếp tuyến của (O)
c, AM.BN = MI.IN =
d,
=> min
<=> <=> AM = R
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a, Chứng minh ∆MEF:∆MOA
b, ∆MEF:∆MOA mà AO=OM => ME=EF
c, Chứng minh F là trực tâm của ∆SAB, AI là đường cao, chứng minh A,I,F thẳng hàng
d, FA.SM = 2
e, OH.MH ≤
=> M ở chính giữa cung AC
Lời giải
a, Tứ giác CMHN là hình chữ nhật
b, Ta có
=>
Vậy OCMN
c, Ta có ∆IOC có E là trực tâm suy ra IN đi qua M và E (đpcm)
d, Ta có => ∆EMA:∆ENB
Tương tự ∆EMH:∆EHN => EM.EN = ngoài ra , ∆EHC vuông tại H có HD là đường cao
=> = ED.EC. Từ đó ta có đpcm
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.