Câu hỏi:

13/07/2024 844

Cho tam giác ABC có đường cao AH và nội tiếp đường tròn (O), đường kính AD. Chứng minh: AB.AC = AH.AD

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gợi ý: Xét các tam giác đồng dạng để chứng minh

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn tâm O đường kính AB và một điểm C chạy trên một nửa đường tròn. Vẽ đường tròn (7) tiếp xúc với (O) tại C và tiếp xúc với đường kính AB tại D

a, Nêu cách vẽ đường tròn (I) nói trên

b, Đường tròn (I) cắt cắt CA, CB lần lượt tại các điểm thứ hai là M, N. Chứng minh M, I, N thẳng hàng

c, Chứng minh đường thẳng CD đi qua điểm chính giữa nửa đường tròn (O) không chứa C

Xem đáp án » 13/07/2024 9,135

Câu 2:

Cho nửa (O) đường kính AB = 2R và điểm C nằm ngoài nửa đường tròn và cùng phía với nửa mặt phẳng có bờ là đường thẳng AB và chứa nửa đường tròn. CA cắt nửa đường tròn ở M, CB cắt nửa đường tròn ở N. Gọi H là giao điểm của AN và BM

a, Chứng minh CH ^ AB

b, Gọi I là trung điểm của CH. Chứng minh MI là tiếp tuyến của nửa đường tròn (O)

Xem đáp án » 13/07/2024 5,726

Câu 3:

Cho đường tròn (O) và hai dây song song AB, CD. Trên cung nhỏ AB lấy điểm M tùy ý. Chứng minh: AMC^=BMD^

Xem đáp án » 13/07/2024 5,155

Câu 4:

Cho tam giác ABC (AB < AC) nội tiếp đường tròn (O). Vẽ đường kính MN ^ BC (điểm M thuộc cung BC không chứa A). Chứng minh các tia AM, AN lần lượt là các tia phân giác các góc trong và các góc ngoài tại đỉnh A của tam giác ABC

Xem đáp án » 13/07/2024 1,128

Câu 5:

Cho tam giác ABC nội tiếp đường tròn (O; R), đường cao AH, biết AB = 8cm, AC = 15 cm, AH = 5cm. Tính bán kính của đưòng tròn (O)

Xem đáp án » 13/07/2024 741

Câu 6:

Cho đường tròn (O) và hai dây cung AB, AC bằng nhau. Qua A vẽ một cát tuyến cắt dây BC ở D và cắt (O) ở E. Chứng minh AB2=AD.AE

Xem đáp án » 13/07/2024 664

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store