Câu hỏi:

13/07/2024 11,918

Cho đường tròn tâm O đường kính AB và một điểm C chạy trên một nửa đường tròn. Vẽ đường tròn (7) tiếp xúc với (O) tại C và tiếp xúc với đường kính AB tại D

a, Nêu cách vẽ đường tròn (I) nói trên

b, Đường tròn (I) cắt cắt CA, CB lần lượt tại các điểm thứ hai là M, N. Chứng minh M, I, N thẳng hàng

c, Chứng minh đường thẳng CD đi qua điểm chính giữa nửa đường tròn (O) không chứa C

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a, Vẽ tiếp tuyến tại C cắt đường AB ở P. Phân giác ^CPB cắt OC ở I. Vẽ đường tròn tâm I bán kính IC, đó là đường tròn cần tìm

b, Do ^ACB=900 nên ^MCN=900

=> MN là đường kính của (I) => ĐPCM

c, Chứng minh được MN//AB nên ID ^ MN => MD=ND hay CD là tia phân giác ^ACB => Đpcm

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho nửa (O) đường kính AB = 2R và điểm C nằm ngoài nửa đường tròn và cùng phía với nửa mặt phẳng có bờ là đường thẳng AB và chứa nửa đường tròn. CA cắt nửa đường tròn ở M, CB cắt nửa đường tròn ở N. Gọi H là giao điểm của AN và BM

a, Chứng minh CH ^ AB

b, Gọi I là trung điểm của CH. Chứng minh MI là tiếp tuyến của nửa đường tròn (O)

Xem đáp án » 13/07/2024 6,587

Câu 2:

Cho đường tròn (O) và hai dây song song AB, CD. Trên cung nhỏ AB lấy điểm M tùy ý. Chứng minh: ^AMC=^BMD

Xem đáp án » 13/07/2024 6,574

Câu 3:

Cho tam giác ABC (AB < AC) nội tiếp đường tròn (O). Vẽ đường kính MN ^ BC (điểm M thuộc cung BC không chứa A). Chứng minh các tia AM, AN lần lượt là các tia phân giác các góc trong và các góc ngoài tại đỉnh A của tam giác ABC

Xem đáp án » 13/07/2024 1,202

Câu 4:

Cho tam giác ABC có đường cao AH và nội tiếp đường tròn (O), đường kính AD. Chứng minh: AB.AC = AH.AD

Xem đáp án » 13/07/2024 1,040

Câu 5:

Cho tam giác ABC nội tiếp đường tròn (O; R), đường cao AH, biết AB = 8cm, AC = 15 cm, AH = 5cm. Tính bán kính của đưòng tròn (O)

Xem đáp án » 13/07/2024 1,000

Câu 6:

Cho đường tròn (O) và hai dây cung AB, AC bằng nhau. Qua A vẽ một cát tuyến cắt dây BC ở D và cắt (O) ở E. Chứng minh AB2=AD.AE

Xem đáp án » 13/07/2024 802
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua