Câu hỏi:
13/07/2024 3,557Cho tam giác ABC vuông tại A, trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng của điểm M qua điểm D.
a) Chứng minh điểm E đối xứng với điểm M qua đường thẳng AB.
b) Các tứ giác AEMC, AEBM là hình gì ?
c) Cho BC = 4 cm. Tính chu vi tứ giác AEBM.
d) Tam giác vuông ABC thỏa điều kiện gì thì AEBM là hình vuông?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a)Vì E đối xứng với điểm M qua điểm D nên M,D,E thẳng hàng và DM = DE (1)
Áp dụng tính chất đường trung bình cho DBAC ta có DM//AC.
Mà DABC vuông tại A nên CA ^ AB Þ MD ^ AB (2)
Từ (1) và (2) Þ E đối xứng với M qua đường thẳng AB.
b) Tứ giác AEMC là hình bình hành, tứ giác AEBM là hình thoi.
c) Chu vi tứ giác AEBM là 4BM = 8 (cm)
d) nếu tứ giác AEBM là hình vuông thì ME = AB mà ME = AC (do ACME là hình bình hành) Þ AC = AB Þ DABC vuông cân tại A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình vuông ABCD. E là điểm trên cạnh DC, F là điểm trên tia đối của tia BC sao cho BF = DE.
a) Chứng minh tam giác AEF vuông cân.
b) Gọi I là trung điểm của EF. Chứng minh I thuộc BD.
c) Lấy điểm K đối xứng với A qua I. Chứng minh tứ giác AEKF là hình vuông
Câu 2:
Cho hình vuông ABCD. Gọi E là điểm đối xứng của điểm A qua điểm D.
a) Chứng minh tam giác ACE là tam giác vuông cân.
b) Từ A hạ AH ^ BE, gọi M và N theo thứ tự là trung điểm của AH và HE. Chứng minh tứ giác BMNC là hình bình hành.
c) Chứng minh M là trực tâm của tam giác ANB.
d) Chứng minh
Câu 3:
Cho tam giác ABC vuông tại A. Về phía ngoài tam giác, vẽ các hình vuông ABDE, ACFG.
a) Chứng minh tứ giác BCGE là hình thang cân.
b) Gọi K là giao điểm của các tia DE và FG, M là trung điểm của đoạn thẳng EG. Chứng minh ba điểm K, A, M thẳng hàng.
c) Chứng minh
d) Chứng minh DC, FB và AM đồng quy.
Câu 4:
Cho hình bình hành ABCD có BC = 2AB và Gọi E, F lần lượt là trung điểm của BC và AD.
a) Chứng minh tứ giác ECDF là hình thoi.
b) Tứ giác ABED là hình gì ?
c) Tính số đo của góc
Câu 5:
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM.
a) Chứng minh
b) Trên đường trung trực Mx của đoạn thẳng BC, lấy điểm D sao cho MD = MA (D và A thuộc hai nửa mặt phẳng đối nhau bờ BC). Chứng minh rằng AD là phân giác chung của
c) Từ D kẻ DE, DF lần lượt vuông góc với AB và AC. Tứ giác AEDF là hình gì ?
d) Chứng minh
Câu 6:
Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng của điểm M qua điểm I.
a) Tứ giác AMCK là hình gì ?
b) Tứ giác AKMB là hình gì ?
c) Có trường hợp nào của tam giác ABC để tứ giác AKMB là hình thoi không ? Vì sao ?
Câu 7:
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng vớ M qua AB, E là giao điểm của MH và AB. Gọi L là điểm đối xứng với M qua AC, F là giao điểm của MK và AC.
a) Xác định dạng của tứ giác AEMF, AMBH, AMCK.
b) Chứng minh H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông ?
về câu hỏi!