Câu hỏi:

13/07/2024 3,602 Lưu

Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Vẽ đường thẳng qua B song song với AC, đường thẳng qua C song song với BD, hai đường thẳng đó cắt nhau ở K.

          a) Tứ giác OBKC là hình gì ?

          b) Chứng minh AB = OK.

          c) Tìm điều kiện của hình thoi ABCD để OBKC là hình vuông.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) BK//OC, CK//OB.

Mà OB ^OC Þ OBKC là hình chữ nhật.

b)ABCD là hình thoi nên AB = BC. OBKC là hình chữ nhật nên KO =BC.

Þ KO = BC Þ ĐPCM.

c) nếu OBKC là hình vuông thì OB = OC Þ BD = AC. Vậy ABCD là hình vuông

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) DDAE = DBAF (c.g.c)

DAE^=BAF^ và AE = AF

EAD^+EAB^=900 => EAB^+BAF^=900 

Þ DAEF vuông cân tại A.

b) DEAF vuông cân nên IA = IE = FI (1); DCFE vuông có IC là đường trung tuyến Þ IE = IC = IF (2);

Từ (1) và (2) suy ra Þ IA = IC nên I thuộc trung trực của AC hay I thuộc BD.

c) Do K đối xứng với A qua I nên I là trung điểm của AK.

Mà I là trung điểm của EF(gt) nên AFKE là hình bình hành, DAEF vuông cân tại A nên AI ^ EF.

Vậy AFKE là hình vuông.

Lời giải

a) Vì ABDE, ACFG là các hình vuông nên ta có E, A, C thẳng hàng và B, A, G cũng thẳng hàng (1) và EC = BG.

EBA^=AGC^= 450 (2).

Từ (1) và (2)

Suy ra EB//CG & EC = BG Þ EBCG là hình thang cân.

b) Chứng minh AEKG là hình chữ nhật, mà M là trung điểm EG nên K, A, M thẳng hàng.

c) Gọi H = MA Ç BC

Vì BEGC là hình thang cân nên DBEG = DEBC (c-g-c) Þ ECB^=EGB^ mà EGA^=MAG^=BAH^ 

Þ BAH^+ABC^=ECB^+ABC^ = 900 Þ MA ^BC tại H.

d) DABK = DBDC vì AB = DB, KA = EG = BC, BAK^=DBC^BKA^=BCD^ mà KA ^ BC Þ CD ^ BK.

Chứng minh tương tự ta cũng có BF ^ KC.

Þ DKBC cosBF, CD, AM là 3 đường cao Þ đồng quy tại trực tâm I