Câu hỏi:

17/08/2022 4,597

Giải hệ phương trình x2+1+yy+x=4yx2+1y+x2=y có nghiệm (x; y) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

+) Xét y = 0 hệ phương trình đã cho trở thành x2+1=0x2+1x2=0 (vô lý)

+) Xét y  0 chia các vế của từng phương trình cho y ta được:

x2+1y+y+x=4x2+1yy+x2=1

Đặt 

x2+1y=ay+x2=ba+b=2ab=1a=2ba(2a)=1b=2aa22a+1=0b=2aa12=0a=b=1x2+1y=1y+x2=1y=x2+1x+y=3y=x2+1x+x2+1=3y=x2+1x2+x2=0y=x2+1x1x+2=0y=x2+1x=1x=2x=1y=2  (tm)x=2y=5  (tm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Ta có  

m1xmy=3m12xy=m+5y=2xm5m1xm2xm5=3m1y=2xm5m1x2mx+m2+5m=3m1y=2xm5m1x=m25m+3m1y=2xm5m+1x=m2+2m+1y=2xm5   1m+1x=m+12      2

Để hệ phương trình có nghiệm duy nhất thì phương trình (2) có nghiệm duy nhất hay m  −1

Khi đó từ phương trình (2) ta suy ra x=m+12m+1=m+1, thay x = m + 1vào phương trình (1) ta được y = 2(m + 1) – m – 5 = m – 3

Vậy với m  −1 thì hệ đã cho có nghiệm duy nhất (x; y) = (m + 1; m – 3)

Ta xét

S=x2+y2=(m+1)2+(m3)2 =m2+2m+1+m26m+9=2m24m+10=2(m22m+1)+8=2(m1)2+8

Vì (m1)2 0; m2(m1)2+88; m

Hay S  8; m. Dấu “=” xảy ra khi m – 1 = 0  m = 1 (TM)

Vậy m = 1 là giá trị cần tìm

Lời giải

Đáp án C

Ta có

mxy=2m4xmy=m+6y=mx2m4xmmx2m=m+6y=mx2mxm24=2m2m6

Hệ phương trình có nghiệm duy nhất khi m240m 2;2

Khi đó

x=2m2m6m24=2m+3m2m+2m2=2m+3m+2

y=m.2m+3m+22m=mm+2

Thay x=2m+3m+2y=mm+2 vào phương trình 6x – 2y = 13 ta được

6.2m+3m+22.mm+2=1314m+18m+2=1314m+18=13m+26m=8 (TM)

Vậy m = 8 là giá trị cần tìm

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP