Câu hỏi:

27/05/2021 1,061

Cho tam giác ABC, đường trung tuyến BD. Trên tia đối của tia DB lấy điểm E sao cho DE=DB. Gọi M, N theo thứ tự là trung điểm của BC;CE. Gọi I; K theo thứ tự là giao điểm của AM, AN và BE. Tính BE biết IK=3cm

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Ta có: DE = DB mà BD + DE = BE nên

2BD=BEBD=DE=12BE

Vì AM, DB là hai đường trung tuyến của tam giác ABC và chúng cắt nhau tại I nên I là trọng tâm tam giác ABC

Khi đó: BI=23BD=23.12BE=13BE (1)    

Vì AN, ED là hai đường trung tuyến của tam giác ACE và chúng cắt nhau tại K nên K là trọng tâm tam giác ACE nên

EK=23ED=23.12BE=13BE (2)

Mặt khác BI+IK+KE=BE kết hợp với (1);(2) suy ra

13BE+IK+13BE=BEIK=13BE

Do đó: BE=3IK=3.3=9cm

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Gọi MH là đường cao kẻ từ M xuống cạnh BC, NK là đường cao kẻ từ N xuống cạnh ME

Hai đường trung tuyến ME và NF cắt nhau tại O nên O là trọng tâm tam giác MNP, do đó MO=23ME

Có ME là trung tuyến ứng với cạnh NP nên E là trung điểm của NP, suy ra NP=2NE

Ta có:

SMNOSMNE=12.NK.MO12.NK.ME=12.NK.23.ME12.NK.ME=23SMNO=23SMNESMNESMNP=12.MH.NE12.MH.NP=12.MH.NE12.MH.2.NE=12SMNE=12SMNP

Từ đó suy ra:

SMNP=2.SMNE=3.SMNOSMNP=3.8=24cm2

Câu 2

Cho ΔABC. Trên tia đối của tia BC lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho BE = CF. Gọi G là trọng tâm tam giác ABC. AG cắt BC tại M. Lấy H là trung điểm AG. Nối EG cắt AF tại N. Lấy I là trung điểm EG

1: Chọn câu đúng

Lời giải

Đáp án A

Ta có: MB=MC (vì AM là đường trung tuyến ứng với cạnh BC của ΔABC); BE=CF(gt)

Mà ME=MB+BE;MF=MC+CF

Suy ra ME=MF

Do đó AM là đường trung tuyến ứng với cạnh EF của ΔAEF

Mặt khác AG=23AM (do G là trọng tâm ΔABC)

Vậy G là trọng tâm ΔAEF

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay