Câu hỏi:

28/05/2021 432

Cho tam giác ABC trong đó A^=100o. Các đường trung trực của AB và AC cắt cạnh BC theo thứ tự E và F. Tính EAF^

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Vì E thuộc đường trung trực của AB nên EA=EB (tính chất đường trung trực của đoạn thẳng)

Khi đó ΔABE cân tại E (dấu hiêu nhận biết tam giác cân) A1^=B^ (tính chất tam giác cân)

Vì F thuộc đường trung trực của AC nên FA=FC tính chất đường trung trực của đoạn thẳng)

Khi đó ΔAFC cân tại F(dấu hiêu nhận biết tam giác cân) A3^=C^ (tính chất tam giác cân)

Do đó A1^+A3^=B^+C^

Xét ΔABC có : BAC^+B^+C^=180o (định lí tổng ba góc của một tam giác)

B^+C^=180oBAC^=180o100o=80o hay A1^+A3^=80o

Lại có :

A1^+A2^+A3^=BAC^A2^=BAC^(A1^+A3^)=100o80o=20o

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Vì O thuộc đường trung trực của cạnh AB nên OA=OB (tính chất đường trung trực của đoạn thẳng)

ΔOAB cân tại O A1^=B1^ (tính chất tam giác cân ) (1)

Vì AH là đường phân giác của ΔABC nên A1^=A2^ (tính chất tia phân giác )      (2)

Từ (1) và (2) suy ra B1^=A2^

Ta có: AC=AF+CF mà AE=CF (gt) nên AC=AF+AE

Mặt khác AB=AC(gt); AB=AE+BE

Do đó AF=BE

Xét ΔBOE và ΔAOF có:

BE=AF(cmt)B1^=A2^(cmt)OB=OA(cmt)ΔBOE=ΔAOF(c.g.c)

Suy ra OE=OF (hai cạnh tương ứng)

Lời giải

Đáp án C

Vì AB là trung trực của HD (gt) AD=AH (tính chất trung trực của đoạn thẳng)

Vì AC là trung trực của HE (gt) AH=AE (tính chất trung trực của đoạn thẳng)

AD=AEΔADE cân tại A. Nên A đúng

+) M nằm trên đường trung trực của HD nên MD=MH (tính chất trung trực của đoạn thẳng)

Xét ΔAMD và ΔAMH có:

MD=MH(cmt)AD=AH(cmt)AMchung

ΔAMD=ΔAMH(c.c.c)MDA^=MHA^ (hai góc tương ứng)

Lại có, N là đường trung trực của HE nên NH=NE (tính chất trung trực của đoạn thẳng)

+) Xét ΔAHN và ΔAEN có:

AN cạnh chung

AH=AE(cmt)NH=NE(cmt)

ΔAHN=ΔAEN(c.c.c)NHA^=NEA^ (2 cạnh tương ứng)

ΔADE cân tại A(cmt) MDA^=NEA^MHA^=NHA^. Vậy HA là đường phân giác của MHN^

Câu 3

Cho tam giác  ABC vuông tại A, kẻ đường cao AH. Trên cạnh AC lấy điểm K sao cho AK=AH. Kẻ KDAC(DAC). Chọn câu đúng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay