Câu hỏi:

29/05/2021 3,068

Cho tam giác ABC cân tại A, vẽ trung tuyến AM. Từ M kẻ ME vuông góc với AB tại E, kẻ MF vuông góc với AC tại F. Từ B kẻ đường thẳng với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường thẳng này cắt nhau tại D. Chọn câu sai

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

+) Tam giác ABC cân tại A có AM là đường trung tuyến nên AM đồng thời là tia phân giác

Ta có: ME vuông góc với AB tại E nên AEM là tam giác vuông tại E, MF vuông góc với AC tại F nên AMF là tam giác vuông tại F

Xét hai tam giác vuông AEM và AFM có:

AM là cạnh chung

AEM^=FAM^ (do AM là tia phân giác của góc A)

Vậy AEM=AFM (cạnh huyền - góc nhọn)

+) Vì AEM=AFM suy ra:

AE = AF (hai cạnh tương ứng bằng nhau)

ME = MF (hai cạnh tương ứng bằng nhau)

Do đó, hai điểm A,M nằm trên đường trung trực EF

Vậy AM là đường trung trực EF

+) Xét hai tam giác vuông ABD vuông tại B, ACD vuông tại C ta có:

AB = AC (do tam giác ABC cân tại A)

AD là cạnh chung

Vậy ABD=ACD (cạnh huyền - cạnh góc vuông)

Suy ra DB = DC (hai cạnh tương ứng bằng nhau)

Do đó D thuộc tia phân giác của góc A (1) (vì điểm cách đều hai cạnh của một góc thì nằm trên tia phân giác của góc đó)

Lại có AM là tia phân giác của góc A, hay M thuộc tia phân giác của góc A (2)

Từ (1) và (2) suy ra 3 điểm A,M,D thẳng hàng

Ta chưa đủ điều kiện để chỉ ra M là trung điểm của AD

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A có BD là phân giác góc ABD DAC, kẻ DE vuông góc với BC (E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chọn câu đúng

Xem đáp án » 29/05/2021 3,040

Câu 2:

Cho tam giác ABC vuông tại A, góc B bằng 60. Vẽ AH vuông góc với BC tại H. Lấy điểm D thuộc tia đối của tia HA sao cho HD = HA

1: So sánh AB và AC, BH và HC

Xem đáp án » 29/05/2021 2,463

Câu 3:

Cho tam giác ABC vuông tại A, góc B bằng 60. Vẽ AH vuông góc với BC tại H. Lấy điểm D thuộc tia đối của tia HA sao cho HD = HA

2: Tính số đo của góc BDC

Xem đáp án » 29/05/2021 2,221

Câu 4:

Cho tam giác ABC. Gọi O là giao điểm của các đường phân giác của tam giác đó. Từ O kẻ OD,OE,OF lần lượt vuông góc với AB,AC,AB. Trên tia đối của tia AC,BA,CB lấy theo thứ tự ba điểm A1;B1;C1 sao cho AA1=BC;BB1=AC;CC1=AB

1: Chọn câu đúng

Xem đáp án » 29/05/2021 1,642

Câu 5:

Cho tam giác ABC vuông tại A có AB = 5cm; AC = 12cm. Gọi G là trọng tâm tam giác ABC, khi đó GA + GB + GC bằng (làm tròn đến 2 chữ số sau dấu phẩy)

Xem đáp án » 29/05/2021 1,624

Câu 6:

Cho tam giác ABC. Gọi O là giao điểm của các đường phân giác của tam giác đó. Từ O kẻ OD,OE,OF lần lượt vuông góc với AB,AC,AB. Trên tia đối của tia AC,BA,CB lấy theo thứ tự ba điểm A1;B1;C1 sao cho AA1=BC;BB1=AC;CC1=AB

2: Chọn câu đúng

Xem đáp án » 29/05/2021 507

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store