Câu hỏi:

29/05/2021 609

Cho tam giác ABC. Gọi O là giao điểm của các đường phân giác của tam giác đó. Từ O kẻ OD,OE,OF lần lượt vuông góc với AB,AC,AB. Trên tia đối của tia AC,BA,CB lấy theo thứ tự ba điểm A1;B1;C1 sao cho AA1=BC;BB1=AC;CC1=AB

2: Chọn câu đúng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

+ Đặt BC=a,CA=b,AB=c. Ta có:

AE=ACAE=ACCDAF=ABBF=ABBD

Suy ra

AE+AF=ACCD+ABBD=AB+AC(BD+CD)

Hay 2AE=AB+ACBC=c+ba

Do đó AE=c+ba2

Ta có: EA1=EA+AA1=c+ba2+a=c+b+a2

Chứng minh tương tự ta có: FB1=c+b+a2;DC1=c+b+a2

Vậy EA1=FB1=DC1

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

+) DE vuông góc với BC nên ta có tam giác BDE là tam giác vuông

Xét hai tam giác vuông BAD và BED ta có:

ABD^=EBD^ (do BD là tia phân giác của góc B)

BD là cạnh chung

Vậy BAD=BED (cạnh huyền - góc nhọn)

AB=BEAD=DE (các cặp cạnh tương ứng)

B;D nằm trên đường trung trực của AE và BD là đường trung trực của AE. Do đó A đúng

+) Xét hai tam giác vuông ADF và EDC ta có:

AF = EC (gt)

DA = DE (cmt)

Vậy ADF=EDC (hai cạnh góc vuông bằng nhau)

Suy ra DF = DC (hai cạnh tương ứng). Do đó B đúng

+)Trong tam giác vuông ADF, AD là cạnh góc vuông,  DF là cạnh huyền nên DA < DF

Mà DF = DC (cmt). Từ đó, suy ra AD < DC. Do đó C đúng

Vậy cả A,B,C đều đúng

Lời giải

Đáp án D

+) Tam giác ABC cân tại A có AM là đường trung tuyến nên AM đồng thời là tia phân giác

Ta có: ME vuông góc với AB tại E nên AEM là tam giác vuông tại E, MF vuông góc với AC tại F nên AMF là tam giác vuông tại F

Xét hai tam giác vuông AEM và AFM có:

AM là cạnh chung

AEM^=FAM^ (do AM là tia phân giác của góc A)

Vậy AEM=AFM (cạnh huyền - góc nhọn)

+) Vì AEM=AFM suy ra:

AE = AF (hai cạnh tương ứng bằng nhau)

ME = MF (hai cạnh tương ứng bằng nhau)

Do đó, hai điểm A,M nằm trên đường trung trực EF

Vậy AM là đường trung trực EF

+) Xét hai tam giác vuông ABD vuông tại B, ACD vuông tại C ta có:

AB = AC (do tam giác ABC cân tại A)

AD là cạnh chung

Vậy ABD=ACD (cạnh huyền - cạnh góc vuông)

Suy ra DB = DC (hai cạnh tương ứng bằng nhau)

Do đó D thuộc tia phân giác của góc A (1) (vì điểm cách đều hai cạnh của một góc thì nằm trên tia phân giác của góc đó)

Lại có AM là tia phân giác của góc A, hay M thuộc tia phân giác của góc A (2)

Từ (1) và (2) suy ra 3 điểm A,M,D thẳng hàng

Ta chưa đủ điều kiện để chỉ ra M là trung điểm của AD

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay