Câu hỏi:

03/02/2021 5,020

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M, N lần lượt là trung điểm của SC, SD (tham khảo hình vẽ bên).

Tính côsin của góc giữa hai mặt phẳng (GMN) (ABCD)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

 

Cách 1: Chọn hệ trục tọa độ Oxyz như hình vẽ.

 

Ta có mặt phẳng (ABCD) có vectơ pháp tuyến là , mặt phẳng (GMN) có vectơ pháp tuyến là 

Gọi α là góc giữa hai mặt phẳng (GMN) (ABCD), ta có

Cách 2:

Gọi E, F lần lượt là hình chiếu của M và N lên (ABCD). Suy ra E, F lần lượt là trung điểm của HC, HD. Hình chiếu của ΔGMN lên (ABCD) là ΔHEF =>

 

 

Cách 3:

 

Gọi H, I lần lượt là trung điểm của AB, CD. J = SI MN, K = GJ HI

Mà d ⊥ (SIH) nên góc giữa góc giữa hai mặt phẳng (GMN) và (ABCD) là 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Gọi tâm mặt cầu là: I(x;y;0)

IA=IBIA=IC(x-1)2+(y-2)2+42=(x-1)2+(y+3)2+12(x-1)2+(y-2)2+42=(x-2)2+(y-2)2+32  (y-2)2+42=(y+3)2+12x2-2x+1+16=x2-4x+4+910y=102x=-4x=-2y=1d=2R=2(-3)2+(-1)2+42=226

Lời giải

Gọi O là giao của AC và BD. Khi đó SOABCD

Gọi I là trung điểm OA. Vì IM// SO ⇒ IM(ABCD) nên hình chiếu của MN lên (ABCD) là IN. Suy ra 

Áp dụng định lí cô sin trong ΔCIN, ta có: 

Ta có d(BC, DM) = d(BC, (SAD)) = d(N, (SAD)) = 2d(O, (SAD)) = 2d(O, (SBC)).

Kẻ OE  SN ⇒ OE ⊥ (SBC).

Ta có d(O, (SBC)) = OE

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP