Câu hỏi:

17/09/2019 6,575

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S:x-12+y+12+z-22=16  và điểm A (1; 2; 3). Ba mặt phẳng thay đổi đi qua A và đôi một vuông góc với nhau, cắt mặt cầu theo ba đường tròn. Tính tổng diện tích của ba đường tròn tương ứng đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Nhận xét: Cho ba mặt phẳng đôi một vuông góc với nhau (P), (Q), (R) tại I. Hạ AH, AD, AE lần lượt vuông góc với ba mặt phẳng trên thì ta luôn có: IA2 = AD2 + AH2 + AE2

Chứng minh: Chọn hệ trục tọa độ với I(0; 0; 0), ba trục Ox, Oy, Oz lần lượt là ba giao tuyến của ba mặt phẳng (P), (Q), (R). Khi đó A (a; b; c) thì IA2 = a2 + b2 + c2 = d2 (A, (Iyz)) + d2(A, (Ixz)) + d2(A, (Ixy)) hay IA2 = AD2 + AH2 + AE2 (đpcm)

Áp dụng: Mặt cầu (S) có tâm I (1; -1; 2) và có bán kính r = 4;

Gọi Ii rj là tâm và bán kính của các đường tròn I (1; 2; 3)

Ta có tổng diện tích các đường tròn là:

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Gọi tâm mặt cầu là: I(x;y;0)

IA=IBIA=IC(x-1)2+(y-2)2+42=(x-1)2+(y+3)2+12(x-1)2+(y-2)2+42=(x-2)2+(y-2)2+32  (y-2)2+42=(y+3)2+12x2-2x+1+16=x2-4x+4+910y=102x=-4x=-2y=1d=2R=2(-3)2+(-1)2+42=226

Lời giải

Gọi O là giao của AC và BD. Khi đó SOABCD

Gọi I là trung điểm OA. Vì IM// SO ⇒ IM(ABCD) nên hình chiếu của MN lên (ABCD) là IN. Suy ra 

Áp dụng định lí cô sin trong ΔCIN, ta có: 

Ta có d(BC, DM) = d(BC, (SAD)) = d(N, (SAD)) = 2d(O, (SAD)) = 2d(O, (SBC)).

Kẻ OE  SN ⇒ OE ⊥ (SBC).

Ta có d(O, (SBC)) = OE

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP