Câu hỏi:
17/09/2019 3,092Trong không gian với hệ tọa độ Oxyz, cho mặt cầu và điểm A (1; 2; 3). Ba mặt phẳng thay đổi đi qua A và đôi một vuông góc với nhau, cắt mặt cầu theo ba đường tròn. Tính tổng diện tích của ba đường tròn tương ứng đó.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn B
Nhận xét: Cho ba mặt phẳng đôi một vuông góc với nhau (P), (Q), (R) tại I. Hạ AH, AD, AE lần lượt vuông góc với ba mặt phẳng trên thì ta luôn có: IA2 = AD2 + AH2 + AE2
Chứng minh: Chọn hệ trục tọa độ với I(0; 0; 0), ba trục Ox, Oy, Oz lần lượt là ba giao tuyến của ba mặt phẳng (P), (Q), (R). Khi đó A (a; b; c) thì IA2 = a2 + b2 + c2 = d2 (A, (Iyz)) + d2(A, (Ixz)) + d2(A, (Ixy)) hay IA2 = AD2 + AH2 + AE2 (đpcm)
Áp dụng: Mặt cầu (S) có tâm I (1; -1; 2) và có bán kính r = 4;
Gọi Ii và rj là tâm và bán kính của các đường tròn I (1; 2; 3)
Ta có tổng diện tích các đường tròn là:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;-4), B(1;-3;1), C(2;2;3). Tính đường kính d của mặt cầu (S) đi qua ba điểm trên và có tâm nằm trên mặt phẳng (Oxy).
Câu 2:
Cho hình chóp tứ giác đều S. ABCD có cạnh đáy bằng a. Gọi M, N lần lượt là trung điểm của SA và BC. Biết góc giữa MN và mặt phẳng (ABC) bằng 60°. Khoảng cách giữa hai đường thẳng BC và DM là:
Câu 3:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-y+z-10 = 0 và đường thẳng . Đường thẳng Δ cắt (P) và d lần lượt tại M và N sao cho A(1;3;2) là trung điểm MN. Tính độ dài đoạn MN.
Câu 4:
Trong không gian Oxyz, cho đường thẳng và mặt phẳng (α): x + y -z – 2 = 0. Trong các đường thẳng sau, đường thẳng nào nằm trong mặt phẳng (α), đồng thời vuông góc và cắt đường thẳng d?
Câu 5:
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A (2; -3; 2), B (3; 5; 4). Tìm toạ độ điểm M trên trục Oz sao cho MA2 + MB2 đạt giá trị nhỏ nhất.
Câu 6:
Trong không gian với hệ tọa độ Oxyz, cho ΔABC biết A(2;0;0), B(0;2;0), C(1;1;3). Gọi H(x0;y0;z0) là chân đường cao hạ từ đỉnh A xuống BC. Khi đó x0 + y0 + z0 bằng:
Câu 7:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, BC = a,SA = a và SA vuông góc với đáy ABCD. Tính sinα, với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC)
về câu hỏi!